Чтение онлайн

ЖАНРЫ

Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Шрифт:

Зельдович и Старобинский встретили меня на пороге с поднятыми вверх руками, но с ухмылками на лицах. «Мы сдаемся, Хокинг прав, а мы ошибались!» В течение часа они объясняли мне свою версию законов квантовых полей в искривленном пространстве-времени вокруг черной дыры. Вначале казалось, что их версия полностью отличается от версии Хокинга. На самом деле они были совершенно эквивалентны. Но в расчеты Зельдовича и Старобинского вкралась ошибка, и они сделали вывод, что черные дыры не могут испаряться. Исправив ошибку, они согласились с Хокингом.

* * *

В зависимости от того, каким способом будут сформулированы законы квантовых полей в искривленном пространстве-времени вокруг черной дыры, можно по-разному описать ее испарение. Однако во всех случаях источником излучения являются флуктуации вакуума. Проще всего описать излучение черной дыры следующим образом, пользуясь корпускулярной, а не волновой картиной.

Подобно «настоящим» волнам с положительной энергией флуктуации вакуума имеют корпускулярно-волновую природу, т. е. являются одновременно волнами и частицами (Врезка 4.1). Их волновую природу мы уже отмечали (Врезка 12.4): флуктуации происходят

случайным и непредсказуемым образом, при этом положительная и отрицательная энергии моментально возникают то тут, то там, а средняя энергия равна нулю. Корпускулярную природу можно описать в рамках понятия виртуальных частиц, которые возникают парами и живут очень короткое время за счет энергии, заимствованной у соседних областей пространства, после чего аннигилируют и исчезают, отдавая вновь свою энергию смежным областям. В случае электромагнитных флуктуаций вакуума виртуальными частицами являются виртуальные фотоны-, в случае гравитационных флуктуаций вакуума — виртуальные гравитоны [127] .

127

Читатель, вероятно, уже знаком с понятиями материи и антиматерии, в частности, с парой электрон — позитрон (частица — античастица). Точно так же, как электромагнитное поле отражает полевую природу фотона, существует «электронное поле», которое отражает полевую природу электрона и позитрона. В тех местах, где из-за вакуумных флуктуаций электронное поле моментально возрастает, может возникнуть пара виртуальный электрон— виртуальный позитрон; там, где из-за флуктуаций поле уменьшается, электрон и позитрон аннигилируют и исчезают. Античастицей фотона является сам фотон, поэтому виртуальные фотоны возникают и исчезают парами, как и гравитоны.

12.2. Механизм испарения черных дыр с точки зрения наблюдателя, падающего внутрь. Слева-, приливная гравитация черной дыры растаскивает пару виртуальных фотонов друг от друга, снабжая их энергией. Справа-, виртуальные фотоны, получив достаточное количество энергии, материализуются в реальные фотоны, один из которых улетает прочь от черной дыры, а другой падает в ее центр

На рис. 12.2 показано, каким образом флуктуации вакуума заставляют испаряться черные дыры. В системе отсчета наблюдателя, падающего внутрь черной дыры, возле горизонта событий черной дыры появляется пара виртуальных фотонов (слева). Виртуальные фотоны могут легко отделиться друг от друга, пока они оба остаются в области с положительной энергией электромагнитного поля. Эта область может быть и крошечной, и очень большой, поскольку флуктуации вакуума возникают во всех диапазонах. Однако размеры области всегда будут соответствовать длине флуктуирующей электромагнитной волны, так что виртуальные фотоны могут удалиться друг от друга только на одну длину волны. Если длина волны примерно равна окружности черной дыры, то виртуальные фотоны могут легко отдалиться друг от друга на четверть этой длины окружности, как показано на рисунке. Приливные силы гравитации возле горизонта событий очень сильны; они очень активно расталкивают виртуальные фотоны друг от друга, сообщая им большую энергию, как это представляется падающему на черную дыру наблюдателю, который находится на полпути между ними. Увеличения энергии фотонов к тому времени, как они будут находиться на расстоянии, равном четверти окружности горизонта событий, хватит для превращения фотонов в настоящие, долгоживущие фотоны (правая часть рис. 12.2). И у них еще остается достаточно энергии, чтобы отдать ее обратно смежным областям пространства с отрицательной энергией. Фотоны, ставшие теперь реальными, отделяются друг от друга. Один попадает внутрь горизонта событий и навсегда потерян для внешней Вселенной. Другой ускользает от черной дыры, унося с собой энергию (следовательно, и массу [128] ), полученную за счет приливных сил гравитации. Черная дыра, у которой уменьшилась масса, немного сжимается.

128

Вспомним, что масса и энергия полностью конвертируемы друг в друга, т. е. это просто два разных имени для одного понятия.

Этот механизм излучения частиц совершенно не зависит от того, что частицы — фотоны и им соответствуют электромагнитные волны. Механизм одинаково хорошо будет работать для всех других видов частиц-волн (т. е. для всех других типов излучения: гравитационного, нейтрино и т. д.); иными словами, черная дыра испускает все виды излучения.

Перед тем как виртуальные частицы материализуются в реальные, они должны находиться на расстоянии меньшем, чем примерно длина соответствующей волны. Но для того чтобы получить от приливных сил гравитации черной дыры энергию, достаточную для материализации, они должны удалиться друг от друга примерно на четверть длины окружности черной дыры. Это означает, что длины волн частиц, излучаемых черной дырой, должны быть не менее четверти длины окружности черной дыры.

Черная дыра с массой в два раза больше массы Солнца имеет длину окружности 35 км, и излучаемые ею частицы, соответственно, имеют длину волны 9 км и больше. По сравнению со световыми или обычными радиоволнами это гигантские длины волн, но они не сильно отличаются от длин гравитационных волн, которые излучала бы черная дыра при столкновении с другой черной дырой.

* * *

В начале своей научной карьеры Хокинг старался быть предельно скрупулезным в своих исследованиях. Он никогда ничего не утверждал до тех пор, пока не получал неоспоримых доказательств. Однако к 1974 г. он изменил свою позицию. «Я бы предпочел быть правым, а не

скрупулезным», — твердо заявил он мне. Большая скрупулезность требует больше времени. К 1974 г. Хокинг поставил перед собой цель добиться полного слияния ОТО и квантовой механики, а также понять происхождение Вселенной — цель, для достижения которой требовалось огромное количество времени и сосредоточенности. Возможно, он ощущал недостаток отведенного ему времени острее, чем другие люди. Причиной, естественно, была его болезнь. Поэтому Хокинг счел уже возможным пренебрегать излишней тщательностью, не уделяя слишком много внимания детальному объяснению всех аспектов своих открытий. Он должен был двигаться вперед с огромной скоростью.

Так случилось, что Хокинг, получив в 1974 г. твердое доказательство того, что черная дыра излучает так, как если бы она имела температуру, пропорциональную ее поверхностной гравитации, сразу перешел к утверждению, без соответствующего доказательства, что все остальные подобия между законами механики черных дыр и законами термодинамики — более чем простое совпадение. По его мнению, законы черных дыр — это то же самое, что и законы термодинамики, но в замаскированном виде. Из этого утверждения и твердо доказанного соотношения между температурой и поверхностной гравитацией Хокинг вывел точную зависимость между энтропией черной дыры и площадью ее поверхности: энтропия в 0,10857… раза больше площади поверхности, деленной на постоянную Планка — Уилера [129] . Другими словами, невращающаяся черная дыра с массой десять солнечных масс имеет энтропию 4,6х1078. Это примерно то же самое, что говорил Бекенштейн.

129

Странный множитель 0,10857 фактически равен 1/(4 In 10), где ln 10 = 2,30258, что следует из моей «нормировки» энтропии; см. сноску 3 на с. 426.

Бекенштейн, конечно, был уверен в правоте Хокинга и очень радовался его выводам. К концу 1975 г. Зельдович, Старобинский, я и другие коллеги Хокинга склонны были согласиться с ним. Однако это согласие было не полным, пока мы не осознали всю глубину случайности, таящейся в черной дыре. Для описания «внутренностей» черной дыры существуют различные способы и при этом без изменений ее внешнего вида (массы, углового момента и заряда). Но что собой представляют эти «внутренности»? И как с физической точки зрения можно понять тепловое поведение черной дыры — тот факт, что дыра ведет себя совершенно так же, как обычное тело, имеющее некую температуру? И когда Хокинг начал заниматься исследованиями квантовой гравитации и происхождения Вселенной, Поль Дэвис, Билл Унру, Роберт Уолд, Джеймс Йорк, я и многие другие коллеги Хокинга нацелились на решение этих вопросов. В течение следующих десяти лет мы постепенно пришли к новому пониманию, которое показано на рис. 12.3.

12.3. (а) Наблюдатели, падающие в черную дыру (два маленьких человечка в скафандрах), видят, что вакуумные флуктуации вблизи горизонта событий черной дыры состоят из пар виртуальных частиц, (б) С точки зрения наблюдателей над горизонтом событий, находящихся в покое по отношению к нему (маленький человечек, висящий на веревке, и второй, которого поддерживает реактивный двигатель), вакуумные флуктуации состоят из горячей атмосферы реальных частиц; это «ускоренная» точка зрения, (в) Кажется, что частицы этой атмосферы, с «ускоренной» точки зрения, излучаются горячим, похожим на мембрану горизонтом. Они отлетают на короткие расстояния и большинство из них притягивается назад к горизонту событий. Однако некоторое количество частиц ухитряются ускользнуть от притяжения черной дыры и испариться во внешнее пространство

Рис. 12.3а изображает флуктуации атома у черной дыры так, как их видят наблюдатели, падающие внутрь через горизонт событий. Эти флуктуации состоят из пар виртуальных частиц. Время от времени благодаря приливным силам гравитации одна из таких пар частиц получает энергию, достаточную для превращения виртуальных частиц в реальные и для того, чтобы одна из этих частиц ускользнула от черной дыры. Эта точка зрения на вакуумные флуктуации и на испарение черных дыр рассматривалась на рис. 12.2.

Рис. 12.3б, изображает другую точку зрения на вакуумные флуктуации черной дыры, со стороны наблюдателей, которые всегда находятся в покое над горизонтом событий. Для того чтобы их не поглотила черная дыра, эти наблюдатели должны иметь достаточно большое ускорение по отношению к падающим наблюдателям, используя ракетные двигатели или просто повиснув на веревке. По этой причине точка зрения этих наблюдателей называется «ускоренной». Это также точка зрения «мембранного подхода» (глава 11).

Удивительно то, что с «ускоренной» точки зрения флуктуации вакуума состоят не из виртуальных частиц, всплывающих из небытия и уходящих в него же, но из реальных частиц, которые имеют положительную энергию и долгую жизнь (см. Врезку 12.5). Реальные частицы образуют горячую атмосферу вокруг черной дыры, очень похожую на атмосферу Солнца. С этими реальными частицами связаны реальные волны. На частицу в атмосфере, движущуюся вверх, действуют гравитационные силы и уменьшают энергию ее движения; соответственно, удаляющаяся волна подвергается гравитационному покраснению, и ее длина волны увеличивается (рис. 12.3б).

На рис. 12.3в изображено движение частиц в атмосфере черной дыры с «ускоренной» точки зрения. Кажется, что частицы излучаются горизонтом событий; большинство из них поднимаются на короткое расстояние над горизонтом событий и затем падают обратно под влиянием сильного притяжения черной дыры, но некоторым удается «ускользнуть из объятий» черной дыры. Эти ускользающие частицы и видят падающие наблюдатели как те, что появляются из виртуальных пар (рис. 12.3а). Это испаряющиеся частицы Хокинга.

Поделиться с друзьями: