Энергия и жизнь
Шрифт:
Увеличение длительности существования считается одним из наиболее характерных проявлений эволюционного прогресса. «Подъем энергии жизнедеятельности» и, в частности, «повышение дыхательной функции», по А. Н. Северцову, является одним из главных эволюционных изменений. При этом очень важно, чтобы траты энергии на образование самой структуры и ее содержание без выполнения других функций, типа основного обмена у животных, минимизировались (или по крайней мере возрастали медленнее общих трат).
Исходя из принципа оптимальной структуры [Розен, 1969], требуется минимизация «метаболической цены», которая измеряется энергией, расходуемой организмом на образование и поддержание структуры.
Введем показатель уровня энергетического развития, характеризующий интенсивность использования энергии на единицу
Для простых случаев (без учета возрастных структур и т. д.) между скоростью обновления биомассы µ и длительностью поколения g существует связь в виде
Здесь R — число одновременно появляющихся потомков; R = 2 при делении клеток, почковании, при последовательном появлении по одному потомку и сохранении активности родителя, т. е. в этом случае время удвоения биомассы равно длительности поколения. Для подобных случаев можно записать
В любом из вариантов энергетический принцип интенсивного развития гласит: любая живая система надорганизменного уровня развивается (эволюционирует) таким образом, что поток использованной энергии на единицу биологической структуры (за время существования этой структуры) возрастает.
Подчеркнем, что введенный показатель, отражая роль и функции структуры биосистем, остается безразмерным, и это немаловажно для сравнительного анализа (биомасса выражается через ее энергосодержание).
Остановимся подробнее на некоторых наиболее существенных выводах.
А. Рост интенсивности энергообмена (согласно ЭПИР). В биологии развития энергетический подход считается одним из наиболее важных, хотя основное внимание здесь уделялось измерениям энергозатрат отдельных особей в малоподвижном состоянии. Многочисленными исследованиями показано, что скорость теплорассеяния (часто измеряемая косвенно по скорости дыхания
где а и k — константы.
«Справедливость этого уравнения установлена для большинства групп животных, от простейших до млекопитающих. Можно сказать, что эта зависимость является эмпирическим законом, справедливым для всех животных», [3отин, Зотина, 1976, с. 49]. Величина k, меньшая единицы, хорошо соответствует известному закону поверхностей Рубнера, так как метаболизм соответствует массе, числу функционирующих клеток, а теплоотдача идет с поверхности. Это означает, что с ростом размеров организма падает величина удельной теплопродукции, так как уменьшается отношение поверхность: объем. Для нашего анализа пока больший интерес представляют данные о том, что в процессе эволюции, а не индивидуального развития коэффициент a, характеризующий в данном уравнении интенсивность энергообмена, существенно возрастает. Согласно данным, суммированным Хеммингсеном для трех, далеко отстоящих по организации групп организмов, константы уравнения равны в среднем: для одноклеточных a1 = 0,084 кал/ч; для пойкилотермных a2 = 0,69; для гомойотермных животных a3 = 19,68 кал/ч. Следовательно, интенсивность обмена возрастает от простейших к гомойотермным более чем на два порядка, более чем в 200 раз. Поддержание постоянной температуры тела для гомойотермных животных обходится примерно в 30 раз дороже по тратам на обмен, по сравнению с пойкилотермными того же
размера. Казалось бы, огромная расточительность! Однако преимущества такого ароморфоза позволили гомойотермным животным занять места, недоступные для пойкилотермов. Вспомним белых медведей и песцов в Арктике или пингвинов в Антарктике; очень впечатляют с этой точки зрения сезонные миграции птиц на многие тысячи километров. Пример с птицами особенно наглядно показывает резко возросшие энергетические возможности гомойотермных животных.К сожалению, данных по полному энергетическому обмену организмов, тем более для популяционпого или экосистемвого уровня, явно недостаточно. Приведенные выше результаты относятся главным образом к основному энергетическому обмену, который составляет лишь часть полного. Хотя наиболее вероятно их параллельное возрастание, так как за каждое новое «изобретение» организму необходимо расплачиваться прежде всего дополнительным расходом энергии. Но в целом возрастание активного обмена и есть итоговая мера прогресса.
Особенно наглядны расхождения обменов для человеческой популяции, вовлекающей в свою среду дополнительные энергетические источники. Если по уровню основного обмена человек занимает срединное положение в группе млекопитающих (согласно известной диаграмме «от мыши до слона»), то дополнительное использование и производство энергоресурсов у него в среднем в 20 раз выше. А в развитых странах и в 50–100 раз! Следовательно, согласно ЭПИР, человек в 20 раз более активен, чем млекопитающие и птицы, обладающие самыми высокими показателями энергорассеяния.
Б. Рост размеров особи и длительности поколения. В теории морфофизиологической эволюции рост продолжительности жизни и уменьшение числа потомков являются одним из показателей увеличения приспособленности животных. Для всего развития жизни в условиях нехватки вещества и постоянной накачки энергией это почти очевидно: резко снижается зависимость от лимитирования по веществу и сохраняется возможность использовать энергетические потоки.
С виду несколько противоречащим ЭПИР кажется увеличение средних размеров организмов в эволюции. Однако не следует забывать, что с увеличением размера организмов, согласно уравнению теплообмена, падает основной обмен, в то время как активный обмен возрастает. (Например, более крупные животные способны перемещаться на большие расстояния и из большего числа выбирать места расселения.)
Подчеркнем высокую напряженность обмена у мелких животных, т. е. большую долю поддерживающего метаболизма по сравнению с активным. Подсчитано, например, что маленькие грызуны расходуют до 95% своей энергии на поддержание постоянной температуры тела и основной метаболизм — тут переваривание и усвоение пищи, работа внутренних органов, мышц, нервной системы — и лишь единицы процентов на активную жизнь: миграции, поиски полового партнера, освоение новых местообитаний [Шварц, 1980]. Относительная доля поддерживающих трат у мелких млекопитающих в десятки раз больше, чем у крупных.
Несмотря на огромные относительные траты энергии, мелкие млекопитающие не имеют такой надежной терморегуляции, как крупные. (И это очень важно в эволюции для увеличения размеров.) «Мелочь» гораздо быстрее гибнет от охлаждения и перегревания, в то время как крупная живность легко переносит подобные условия (примеры распространения крупных животных к полюсам холода широко известны). Повышенная долевая активность энергетического обмена позволяет крупным гомойотермным животным освоить огромные территории, недоступные для других организмов. Это и есть биологический прогресс, по А. Н. Северцову.
Если говорить о соотношении активного и поддерживающего обменов у человека как биологического вида, то оно примерно такое же, как у других млекопитающих его размера (примерно в 2–3 раза). Однако интересно оценить мгновенные максимальные возможности человека по активному расходу энергии. Возьмем, например, рекордсмена-штангиста, который в рывке примерно за полсекунды поднимает на высоту 2 м около 200 кг. Мощность, развиваемая им, составляет около 8 кВт (или около 2 ккал/с). Основной обмен (около 1 ккал/мин) превышает это более чем в 100 раз. Однако в процессе общественного развития человека мускульная энергия заменялась энергией механизмов и машин (об этом мы будем говорить далее).