Чтение онлайн

ЖАНРЫ

Энергия и жизнь

Печуркин Николай Савельевич

Шрифт:

Очень доказательными в этом смысле являются эксперименты по молекулярной эволюции, проведенные группой Спигелмана, о которых мы писали в предыдущей главе. Помимо изменения размеров фаговой РНК, реплицирующейся с помощью фермента репликазы, обнаружено, что фермент способен катализировать синтез рибонуклеотидных цепочек и без матрицы. Синтез шел медленнее, до тех пор пока образующаяся цепь не становилась матрицей сама. Полученная РНК оказалась совершенно непохожей (!) на фаговую РНК. Она была случайной последовательностью нуклеотидных остатков, но реагировала на факторы отбора подобно ее специфической фаговой форме. Следовательно, не строгая структура определяет функцию, а под функционирование подбирается структура. И, как мы обсуждали в предыдущей главе, можно предсказывать направление отбора соответствующих структур согласно энергетическим принципам.

Коротко резюмируем суть рассмотренного этапа развития жизни — химической эволюции, вплоть до образования первых живых клеток. Основу его составляет физико-химическое

концентрированно абиогенно образованного органического вещества в пробионтах. Отбор, возникающий уже на этом предбиологическом этапе, действует не на отдельные молекулы, а на целостные фазово-обособленные структуры. Выигрывали те из них, которые наиболее эффективно прокачивали через себя вещество под влиянием внешнего потока энергии (структура подгонялась под функцию). Прямым или косвенным источником этой энергии был поток солнечного излучения и, возможно, поток доступной энергии изнутри Земли, например с газовыми выделениями. Возникновение генетического кода резко ускорило ход эволюции и действие отбора, так как появился автокатализ в ограниченной среде (основа для действия отбора в открытых системах, неважно: живых или неживых).

В заключение особо оговорим энергетические преимущества перехода к живым системам, совершенствования и усложнения структур протоклеток. Фазовое обособление структур очевидно из физико-химических требований. Однако по энергетике, например при прямом взаимодействии с квантами света, молекулы, связанные в полимер и укрытые в клетке, могут даже частично проигрывать по сравнению со свободными молекулами того же типа, оставшимися в первичном бульоне. В частности, это может происходить из-за эффекта затенения их друг другом или оболочкой клетки. Но мощнейшим противовесом, компенсирующим все потери, служит возникающий метаболизм. Высасывание по законам химической кинетики органических молекул с запасенной в них абиогенно энергией из объемов, гораздо больших, чем размеры самих пробионтов, резко увеличивает энергетическую нагрузку на каждую включенную в состав протоклетки молекулу. Первичные варианты, способные к автокатализу, относительно быстро смогли использовать самые доступные органические молекулы из первичного бульона — это и есть развитие по ЭПЭР (захват энергии и пространства без изменения качества). А при нехватке доступного источника стала в отборе совершенствоваться качественная сторона — интенсификация процесса метаболизма старых соединений и возрастание умения утилизировать новые источники. Это — прямое проявление действия ЭПИР (совершенствование структуры для выполнения функций, связанных с перекачкой энергии). Развитие и совершенствование циклов недостающих веществ выглядит здесь очевидным.

Итак, всего вероятнее, что первый шаг в «оживлении» химического круговорота, первый разрыв химического цикла, а точнее, встраивание в него, были сделаны гетеротрофными анаэробными формами. По сравнению с остальными организмами их пути метаболизма гораздо короче, а энергия, используемая ими, заключена в транспортабельной форме в абиогенно образованных органических молекулах. Первичные сопрягающие агенты в форме полифосфатов также могли иметься в наличии в результате простых химических синтезов.

Основным поставщиком энергии, самым простым, самым универсальным, является гликолиз, или анаэробное брожение. При нем происходит разрушение глюкозы или родственных ей соединений, и высвобождаемая энергия запасается в форме «моченого полифосфата», т. е. в форме молекулы АТФ, которая и является универсальной энергетической «валютой». Следовательно, по схеме эволюции «от простого к сложному» («задом наперед», по Горовицу) гликолитический путь получения энергии возник после исчерпания полифосфатов, образовавшихся абиогенно путем химической конденсации. Видимо, скорости химического образования полифосфатов уже не могли удовлетворять энергетические потребности растущей популяции примитивных организмов. И это естественно. Автокатализ, характерный для живых систем, быстро показал неэффективность химического синтеза вещества, а особенно его энергетическую недостаточность.

При гликолизе, в результате 10 согласованных реакций, каждая молекула глюкозы расщепляется на две молекулы пирувата, а клетка получает две макроэргические фосфатные связи в виде молекул АТФ (из АДФ). Подчеркнем единство энергетического и субстратного подходов. Пируват служит субстратом для целого семейства нужных для клеток соединений, например этилового спирта, молочной кислоты и ряда других кислот типа муравьиной, уксусной, янтарной, масляной; пропилового и бутилового спирта, ацетона, газообразного водорода и т. д. Это определяется природой конечного акцептора электрона. И, что очень существенно, весь этот «букет» достигается включением лишь небольшого числа дополнительных реакций и с применением сходных каталитических механизмов. Все эти вещества служат строительным материалом для дальнейших синтетических реакций конструктивного обмена. Если к этому добавить, что гликолиз характеризуется необычайно высокими скоростями протекания реакции, а следовательно, и получения энергии, то становится ясным, почему он так широко распространен в современном живом мире.

Недостатком его является невысокая степень высвобождения энергии из исходного субстрата: продукты его остаются еще высокоэнергетическими.

Поэтому электроны, поднятые прямо или косвенно энергией фотонов на высокий энергетический уровень, опускаются не на нижний основной уровень, а совсем немного, останавливаясь на промежуточных уровнях восстановленных соединений-акцепторов.

Подытожим результаты рассмотрения первого этапа становления биотического круговорота. Это — гетеротрофные, анаэробные одноклеточные организмы, возможно похожие на современные бактерии, такие как клостридии, живущие за счет брожения. Они существуют за счет распада богатых энергией органических соединений, образовавшихся абиогенно. Они играют роль «мусорщиков», уничтожая органику химического происхождения, возникшую под влиянием УФ-лучей, электрических разрядов, ударных волн и прочих источников энергии. Основная функция гетеротрофов — деструкция органических соединений. Они ее выполняют быстро за счет автокатализа и таким образом «выжимают» все, что может дать химический синтез, гораздо более медленный по сравнению с биологической деструкцией. Наступает первый кризис из-за несбалансированности круговорота. И кризис этот — энергетический, так как косвенного производства энергии через полифосфаты явно недостаточно. Кроме того, низкий энергетический выход процессов брожения требует переработки громадного количества субстрата для обеспечения энергией биосинтетических процессов в клетке. Например, по сравнению с позднее возникшим окислительным фосфорилированием гликолиз забирает лишь около 7% энергии, запасенной в молекуле глюкозы (но об этом чуть позже). Таким образом, первичной жизни не хватало доступной энергии.

И в то же время потоки энергии «бушевали» вокруг простых протоклеток, задевая их самих. Источником этих потоков были Солнце и ядро Земли, дававшее богатые энергией газовые эксгаляции.

7.2. Первый биотический круговорот (цианобактериальное сообщество)

Первичные гетеротрофные клетки, естественно, были частично окрашенными и потому взаимодействовали с потоком солнечного излучения. Оно могло разрушать молекулы, особенно его УФ-часть, или терялось в виде тепла. Но в толще воды, более интенсивно поглощавшей коротковолновое излучение, могли иметь место и другие взаимодействия, в частности взаимодействия о длинноволновым излучением. Поглощение света сложными молекулами могло приводить к развитию фотохимических реакций, в которых за счет энергии света при обычных температурах преодолевались высокие энергетические барьеры. Это приводило и к ускорению скоростей реакций, и к практически необратимому синтезу еще более сложных соединений. Естественно считать, что флюоресцирующие сложные молекулы, входящие в состав живых клеток, вначале приводили к ускорению лишь некоторых процессов метаболизма, а не к прямому фотосинтезу органических веществ.

Среди фотосенсибилизаторов, т.е. оптически активных молекул, возбуждаемых квантами света, наиболее часто встречаются (как составные части ферментов) соединения, построенные путем сочетания неорганических ионов с органической основой, которую, как правило, составляет порфириновый цикл. Порфирины могут образовываться из пирролов и формальдегида, несколько хуже в восстановительной, чем в окислительной среде, а для синтеза наиболее восстановленных порфиринов требуются строго анаэробные условия. Включение металла в центр порфириновой молекулы заметно увеличивает ее фотохимическую активность, а кроме того, и сильно увеличивает интенсивность окраски порфирина и тем самым его способность к поглощению видимого света. Дальнейшая эволюция шла по пути увеличения количества светочувствительных пигментов и усложнения их структур.

Серьезным завоеванием на пути к полной автотрофии явился анаэробный фотосинтез. Его представителями, сохранившимися до нашего времени, являются фотосинтезирующие бактерии (пурпурные, серные и несерные; зеленые серные бактерии). Они способны усваивать энергию света, но еще не способны к отрыву электрона от воды. Они используют в качестве восстановителя (источника электрона и водорода) различные органические или неорганические соединения. Например, для фотохимического отнятия электрона от сероводорода требуется значительно меньше энергии, чем для отнятия его от воды.

Главным эволюционным приобретением, лежащим в основе фотосинтеза, как в целом качественно нового этапа в развитии биоэнергетических систем на Земле, следует считать организацию электронного потока. Именно он оказался наиболее эффективным способом запасать энергию электронного возбуждения в виде химических связей.

Постепенное уменьшение содержания в среде восстановленных органических субстратов заставило в обостряющейся конкурентной борьбе расширять круг используемых источников углерода. Световая энергия из дополнительного источника энергии, облегчавшего фотоассимиляцию имевшихся органических соединений, превращалась в основной, более мощный поток. В клетках накапливалось большое количество пигментов, шел отбор наиболее эффективно работающих систем, происходило пространственное упорядочивание пигментных структур, совершенствовались механизмы миграции энергии возбуждения от всей массы пигментов к каталитически активно работающему пигменту — активному центру. (В современных организмах энергия, поглощенная большим количеством пигментов, находящихся в агрегированных структурах, очень быстро и эффективно передается к активному центру.)

Поделиться с друзьями: