Чтение онлайн

ЖАНРЫ

Шрифт:

Рис. 12.6. Результат работы приложения «Шифр Цезаря»

12.5. Шифр с автоключом

Шифр, основывающийся на шифре Виженера, в котором или само сообщение, или результирующая криптограмма используются в качестве ключа, называется шифром с автоключом. Шифрование начинается с помощью «первичного ключа» (который является настоящим ключом в нашем смысле) и продолжается с помощью сообщения или криптограммы, смещенной на длину первичного ключа. Рассмотрим пример, в котором первичным ключом является набор букв ЗЕБРА. В табл. 12.2 приведено шифрование, когда в качестве ключа используется сообщение.

Таблица 12.2.

Шифр с автоключом (ключ – сообщение)

Если

же в качестве ключа использовать криптограмму, то получится шифрование, как в табл. 12.3.

Таблица 12.3.

Шифр с автоключом (ключ – криптограмма)

Теперь, когда понятно, как работает данный шифр, реализуем второй вариант как чуть более сложный, чем первый. В интерфейсе программы менять ничего не станем, поэтому он будет выглядеть как в предыдущем примере (см. рис. 12.5). Только поменяем назначение текстового поля. Теперь оно будет содержать ключ уже не в виде целого числа, а в виде произвольной строки, полностью состоящей из русских букв верхнего и нижнего регистров, за исключением буквы «ё» обож регистров.

Как обычно, сначала приведем код с объявлением необходимых типов, констант и переменных, а также объявление класса нашей формы. Все это содержится в листинге 12.18.

...

Листинг 12.18.

Объявление типов и класса нашей формы

type

TRusLetters = set of Char;

TfmEncryptingAutoKey = class(TForm)

mmDecryptMessage: TMemo;

mmEncryptMessage: TMemo;

lbDecryptMessage: TLabel;

lbEncryptMessage: TLabel;

btnEncryptMessage: TButton;

btnDecpyptMessage: TButton;

edKey: TEdit;

lbKey: TLabel;

procedure btnEncryptMessageClick(Sender: TObject);

procedure btnDecpyptMessageClick(Sender: TObject);

private

{ Private declarations }

function GetKey: String;

function EncryptString(strEncryptMsg: String;

var strKey: String): String;

function DecryptString(strDecryptMsg: String;

var strKey: String): String;

procedure EncryptDecrypt(SrcLines, DstLines: TStrings;

bEncrypt: Boolean);

public

{ Public declarations }

end;

const

RusLetters: TRusLetters = [\'А\'..’я’];

var

fmEncryptingAutoKey: TfmEncryptingAutoKey;

Начнем рассмотрение, как и в предыдущем примере, с функции получения введенного пользователем ключа. Ее работа заключается в следующем. Сначала каждый символ ключа проверяется на принадлежность алфавиту русского языка. Если найден посторонний символ, то результатом работы функции будет пустая строка, что свидетельствует об ошибке ввода ключа пользователем. В случае успешного завершения функции она возвращает исходную строку ключа. Код этой функции приведен в листинге 12.19.

...

Листинг 12.19.

Функция получения ключа

function TfmEncryptingAutoKey.GetKey: String;

var

i: Integer;

begin

Result := \'\

for i := 1 to Length(edKey.Text) do

if not (edKey.Text[i] in RusLetters) then

Exit;

Result := edKey.Text;

end;

Рассмотрим работу функций EncryptString и DecryptString. На входе они получают строку, которую требуется преобразовать, и первичный ключ. Внешне они очень похожи, но все же отличаются, и эти отличия существенны. Функция шифрования выполняет следующие действия. В цикле осуществляется проход по строке и проверяется, является ли очередной символ буквой русского алфавита. В случае положительного ответа этот символ преобразуется при помощи очередного символа ключа и добавляется в его конец. Преобразование осуществляется по правилу, которое мы указывали при рассмотрении шифра Виженера: li =xi + yi (modm), то есть символ открытого текста и символ ключа складываются с последующим сокращением этой суммы по модулю т, где т – общее количество букв в алфавите (листинг 12.20).

...

Листинг 12.20.

Функция шифрования строки с помощью ключа и криптограммы

function TfmEncryptingAutoKey.EncryptString(strEncryptMsg: String;

var strKey: String): String;

var

i: Integer;

begin

for i := 1 to Length(strEncryptMsg) do

if strEncryptMsg[i] in RusLetters then

begin

strEncryptMsg[i] := Chr(((Ord(strEncryptMsg[i]) –

Ord(\'А\')) + (Ord(strKey[1]) – Ord(\'А\'))) mod 64 + Ord(\'А\'));

Delete(strKey, 1, 1);

strKey := strKey + strEncryptMsg[i];

end;

Result := strEncryptMsg;

end;

Функция

дешифрования строки с помощью ключа и криптограммы делает следующее. Как и в предыдущей функции, в цикле осуществляется проход по строке и проверяется, является ли очередной символ буквой русского алфавита. При положительном ответе данный символ сначала добавляется в конец ключа, а потом только осуществляется его преобразование. Обратное преобразование символа проходит по следующему правилу: li = xi – yi (mod m), то есть из символа преобразованного текста вычитается символ ключа с последующим сокращением этой разности по модулю т, где т – общее количество букв в алфавите. Если результат отрицателен, то происходит дополнение до положительного числа значением т. Как это реализовано, показано в листинге 12.21.

...

Листинг 12.21.

Функция дешифрования строки с помощью ключа и криптограммы

function TfmEncryptingAutoKey.DecryptString(strDecryptMsg: String;

var strKey: String): String;

var

i: Integer;

begin

for i := 1 to Length(strDecryptMsg) do

if strDecryptMsg[i] in RusLetters then

begin

strKey := strKey + strDecryptMsg[i];

strDecryptMsg[i] := Chr((((Ord(strDecryptMsg[i]) –

Ord(\'А\')) – (Ord(strKey[1]) – Ord(\'А\'))) + 64) mod 64 +

Ord(\'А\'));

Delete(strKey, 1, 1);

end;

Result := strDecryptMsg;

end;

Обработчики событий OnClick вызывают функцию EncryptDecrypt с необходимыми параметрами. У этой функции всего три параметра. Первый указывает на источник текста сообщения, требующего преобразования, второй указывает на приемник преобразованного текста сообщения. Последний параметр определяет тип преобразования текста сообщения. Если он равен True, то текст сообщения шифруется и помещается в приемник. В противном случае текст сообщения дешифруется и также помещается в приемник. Это происходит следующим образом. Сначала получается ключ, при помощи которого будет осуществляться преобразование текста сообщения. Если ключ некорректен, то выдаем соответствующее предупреждение и больше ничего не делаем. Если ключ корректен, то в зависимости от последнего параметра вызываем соответствующую функцию преобразования для каждой строки источника текста сообщения и добавляем результат в приемник (листинг 12.22).

...

Листинг 12.22.

Функция шифрования/дешифрования текста сообщения

//bEncrypt = True – шифровать

//bEncrypt = False – дешифровать

procedure TfmEncryptingAutoKey.EncryptDecrypt(SrcLines,

DstLines: TStrings; bEncrypt: Boolean);

var

i: Integer;

strKey: String;

begin

strKey := GetKey;

if strKey <> \'\' then

begin

DstLines.BeginUpdate;

DstLines.Clear;

if bEncrypt then

for i := 0 to SrcLines.Count – 1 do

DstLines.Add(EncryptString(SrcLines[i], strKey))

else

for i := 0 to SrcLines.Count – 1 do

DstLines.Add(DecryptString(SrcLines[i], strKey));

DstLines.EndUpdate;

end

else

MessageDlg(\'Ошибка: ключ задан неверно\', mtError, [mbOk], 0);

end;

procedure TfmEncryptingAutoKey.btnEncryptMessageClick(Sender:

TObject);

begin

EncryptDecrypt(mmDecryptMessage.Lines,

mmEncryptMessage.Lines, True);

end;

procedure TfmEncryptingAutoKey.btnDecpyptMessageClick(Sender:

TObject);

begin

EncryptDecrypt(mmEncryptMessage.Lines,

mmDecryptMessage.Lines, False);

end;

end.

Пример того, как работает полученное нами приложение, показан на рис. 12.7.

Рис. 12.7. Результат работы приложения «Шифр с автоключом»

12.6. Взлом

В заключение мы рассмотрим один из методов вскрытия шифров. Здесь мы попытаемся реализовать приложение, которое будет способно взломать шифр Цезаря. Оно будет основываться на одном довольно распространенном методе криптоанализа, который называется частотным анализом. Суть его заключается в том, что в большинстве осмысленных текстов есть определенная закономерность относительно того, как часто встречаются те или иные буквы. Следовательно, если мы будем знать, как часто встречается та или иная буква в языке, на котором написано сообщение, мы сможем сделать предположение о том, какие буквы зашифрованы в данной криптограмме. Таким образом, нам требуется подсчитать частоту встречи каждой буквы в криптограмме и после этого сопоставить их с частотами букв, которые известны относительно алфавита заданного языка.

Поделиться с друзьями: