Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Шрифт:
vдр=mF=mq=mqV/b. (43.16)
Электрический ток I равен потоку заряда за 1 сек. Электрический ток через одну из пластин равен, таким образом, полному заряду ионов, достигающих пластины за 1 сек. Если ионы движутся к пластине со скоростью vдр, то за время Т пластины достигнут те ионы, которые находились не дальше, чем на расстоянии vдрT от нее. Если в единичном объеме содержится ni. ионов, то за время Т на пластине высадится niAvдрT ионов.
Каждый
Собранный за время Т заряд=qniAvдрT. (43.17)
Ток / — это отношение собранного за время Т заряда к времени Т:
I=qniAvдр. (43.18)
Подставляя сюда скорость дрейфа vдр из (43.16), получаем
I=mq2ni(A/B)V. (43.19)
Мы выяснили, что ток пропорционален разности потенциалов, это и есть закон Ома, а сопротивление R равно обратной постоянной пропорциональности:
1/R=mq2ni(A/B). (43.20)
Мы нашли связь сопротивления со свойствами молекул niq и m, которое в свою очередь зависит от t и m. Если мы при помощи атомных измерений определим niи q, то, измеряя R, можно определить m, а потом и t.
§ 5. Молекулярная диффузия
Перейдем к другой задаче, для которой нам придется несколько изменить метод анализа, — к задаче о диффузии. Предположим, что мы взяли ящик, заполненный газом, находящимся в тепловом равновесии, а потом в любое место внутри ящика вспрыснули небольшое количество другого газа. Назовем первоначальный газ газом «фона», а новый газ — «особым» газом. Особый газ начинает распространяться по всему ящику, но распространение это замедляется наличием молекул фона. Явление такого замедленного распространения называется диффузией. Диффузия в основном определяется столкновениями молекул особого газа с молекулами фона. После многих столкновений особые молекулы более или менее равномерно распределятся по всему ящику. Важно не спутать диффузию газа с переносом больших количеств вещества в результате конвекционных токов. Обычно смешение двух газов происходит именно в результате комбинации конвекции и диффузии. Сейчас нас интересует только такое перемешивание, которое не сопровождается «порывами ветра». Газ распространяется только благодаря молекулярному движению, т. е. происходит диффузия. Давайте выясним, быстро ли происходит диффузия.
Итак, мы приступаем к вычислению общего потока молекул особого газа, порождаемого молекулярным движением. Общий поток не равен нулю только тогда, когда распределение молекул отличается от равновесного, иначе усреднение молекулярного движения сводит общий поток к нулю. Рассмотрим сначала поток в направлении оси х. Чтобы определить, чему этот поток равен, мы должны вообразить площадку, перпендикулярную к оси, и подсчитать число молекул, пересекающих эту площадку. Чтобы определить общий поток, мы должны считать положительными те молекулы, которые движутся в направлении положительных x, и вычесть из этого числа те молекулы, которые движутся в противоположном направлении. Как мы неоднократно убеждались, число молекул, пересекающих площадку в течение времени DT, равно числу молекул, находящихся к началу интервала DT внутри объема, заключенного между нашей площадкой и площадкой, расположенной от нее на расстоянии vDT. (Заметим, что здесь v — настоящая скорость молекулы, а отнюдь не скорость дрейфа.)
Мы упростим наши выкладки, если возьмем площадку единичной площади. Тогда число особых молекул, пересекающих площадку слева направо (справа от площадки лежат положительные x-направления), равно n_vDT, где n_ — число особых молекул в единичном объеме слева от площадки (с точностью до множителя ~1/6, но мы такими множителями пренебрежем!). Аналогично, число особых молекул, движущихся справа налево, равно n+vDT, где n+ — плотность
особых молекул справа от площадки. Если мы обозначим молекулярный поток буквой J, под которой мы будем понимать общий поток молекул через единичную площадку за единицу времени, то получим
или
J=(n– – n+)v. (43.22)
А что понимать под n– и n+? Когда мы говорим «плотность слева от площадки», то как далеко налево? Мы должны измерить плотность в том месте, откуда молекула отправляется в свой «свободный полет», потому что число стартующих молекул определяется числом молекул, находящихся в этом месте. Таким образом, n– — это плотность молекул на расстоянии длины свободного пробега l слева от нашей воображаемой площадки, а n+ — плотность молекул на расстоянии длины свободного пробега справа от нее.
Распределение особых молекул в ящике удобно описывать с помощью непрерывной функции х, у и z, которую мы обозначим na. Под na(х, у, z) нужно понимать плотность особых молекул в маленьком объеме вокруг точки (х, у, z). Тогда
разность (n+– n– ) можно представить в виде
(n+– n– )=(dna/dx)Dx=(dna/dx) ·2l (43.23)
Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем
Jx=lv(dna/dx) (43.24)
Мы выяснили, что поток особых молекул пропорционален производной плотности, или, как иногда говорят, «градиенту плотности».
Ясно, что мы сделали несколько грубых приближений. Не говоря уже о том, что мы постоянно забывали о множителях, мы использовали v, когда нужно было ставить vx, а разместив объемы, содержащие молекулы n+и n– , на концах перпендикуляров к площадке, взяли перпендикуляры длиной l. Между тем для тех молекул, которые движутся не перпендикулярно к поверхности, l соответствует длине наклонного пути. Можно исправить эти недоделки; более тщательный анализ показал бы, что правую часть уравнения (43.24) нужно умножить на 1/3. Итак, более правильный ответ выглядит следующим образом:
Аналогичные уравнения можно написать для токов вдоль y- иz-направлений.
С помощью макроскопических наблюдений можно измерить ток Jхи градиент плотности dna/dx. Их отношение, найденное экспериментально, называется «коэффициентом диффузии» D, Это значит, что