Физика пространства - времени
Шрифт:
Задача физика — определить положение в пространстве и времени события (взрыв хлопушки А), пользуясь одной из двух движущихся относительно друг друга систем отсчёта
Две системы координат — ориентированная по магнитному компасу и ориентированная по Полярной звезде
Две системы отсчёта — лабораторная система отсчёта и система отсчёта ракеты
Для удобства все землемеры условились измерять положения относительно общего начала (центр городской площади)
Для удобства все физики условились измерять положения событий в пространстве и во времени относительно общего опорного события (взрыв опорной хлопушки)
Анализ результатов, полученных землемером, упрощается, если координаты точки x и y измерены в одинаковых единицах — метрах
Анализ результатов, полученных физиком, упрощается, если координаты события x и t измерены в одинаковых единицах — метрах
Взятые
Взятые по отдельности, координаты xA и tA события А имеют разные значения в двух системах отсчёта, равномерно движущихся относительно друг друга
Инвариантность длины. Расстояние (длина) xA^2+yA^2 от ворот А до городской площади получается одинаковым, если его вычислять по результатам измерений в любой из двух повёрнутых относительно друг друга систем (xA и yA измерены в метрах)
Инвариантность интервала. Интервал tA^2-xA^2 между событием А и опорным событием получается одинаковым, если его вычислять по результатам измерений в любой из двух систем отсчёта, движущихся относительно друг друга xA и tA измерены в метрах)
Преобразование поворота. Пользуясь эвклидовой геометрией, землемер может решить следующую задачу: по данным значениям координат xA' и yA' ворот А в системе ночного землемера и относительному наклону соответствующих осей найти координаты xA и yA тех же самых ворот в системе дневного землемера
Преобразование Лоренца. Пользуясь лоренцевой геометрией, физик может решить следующую задачу: по данным значениям координат xA' и tA' события А в системе ракеты и скорости ракеты относительно лабораторной системы отсчёта найти координаты того же самого события xA и tA в лабораторной системе
Притча о землемерах подсказывает нам, что было бы полезно перейти к одинаковым единицам для измерения как пространства, так и времени. Поэтому возьмём в качестве такой единицы метр. В метрах можно измерять и время. Если установить на обоих концах полуметрового стержня по зеркалу, то между этими зеркалами может отражаться взад и вперёд луч световой вспышки. Такое устройство представляет собой часы. Можно сказать, что эти часы издают «тик-так» каждый раз, когда свет возвращается к первому зеркалу. Между всеми последовательными возвращениями свет вспышки проходит путь, в общей сложности равный 1 метру. Мы назовём поэтому промежуток времени между двумя последовательными «тик-так» таких часов 1 метром светового времени или, проще, 1 метром времени. (Проверьте, что 1 секунда приблизительно равна 3·10 метрам светового времени).
Время измеряется в метрах
Одна из целей физики — отыскание простых взаимосвязей между событиями. В нашем случае для этого целесообразно выбрать специальную систему отсчёта, относительно которой законы физики имеют простую форму. Заметим, что вблизи Земли все предметы подвержены действию силы тяжести. Это действие усложняет известные нам по обыденному опыту законы движения. Чтобы исключить подобные усложняющие обстоятельства, мы сконцентрируем наше внимание в следующем параграфе на свободно падающей вблизи Земли системе отсчёта. В такой системе отсчёта сила тяжести не ощущается, и мы назовём эту лишённую тяготения систему отсчёта инерциальной. В частной теории относительности исследуются классические законы физики, взятые относительно инерциальной системы отсчёта.
Рис. 2. Рисунок из первых изданий «Из пушки на Луну» Ж. Верна. Кличка бедного
пса была Спутник.Упрощение: переход к свободно падающей лаборатории
Принципы частной теории относительности замечательно просты. Они много проще аксиом геометрии Эвклида или правил управления автомобилем. Однако и геометрия Эвклида, и автомобиль были созданы поколениями обыкновенных людей, даже не испытавшими в полной мере удивления, которого заслуживали плоды их творчества. Некоторые из лучших умов XX в. выступали против идей теории относительности, и не потому, что их природа темна, а по той простой причине, что человеку трудно преодолеть установившийся взгляд на вещи. Теперь относительность уже выиграла сражение. Мы уже можем выразить её понятия так просто, что правильный взгляд на вещи устанавливается сам собой,— это значит «делать плохое трудным, а хорошее —простым» 1). Понимание теории относительности отныне не есть проблема обучения, а просто дело интуиции — практикуемого подхода к вещам. При таком подходе громадное число прежде непостижимых опытных данных становятся совершенно естественными и понятными 2).
1) Высказывание Эйнштейна по аналогичному поводу в письме архитектору Корбюзье.
2) Исчерпывающий список литературы по частной теории относительности для начинающих, а также ряд оттисков работ см. в книге Special Relativity Theory, Selected Reprints, опубликованной Американским институтом физики для Американской ассоциации учителей физики в 1963 г. [В советском издании обширную библиографию по частной теории относительности см. в книге: У. И. Франкфурт, Очерки по истории специальной теории относительности, Изд-во АН СССР, М., 1961.— Прим. перев.]
2. ИНЕРЦИАЛЬНАЯ СИСТЕМА ОТСЧЁТА
Менее чем через месяц после того, как капитуляцией при Аппоматоксе закончилась гражданская война в Америке (1861—1865), французский писатель Жюль Верн начал писать свой роман «Из пушки на Луну». В этом романе рассказывалось о том, как выдающиеся американские артиллерийские инженеры отлили в специальной шахте во Флориде гигантскую пушку, направленную жерлом в небо. Из этой пушки был выпущен десятитонный снаряд, в котором находились трое людей и несколько животных. Когда снаряд устремился в свободный полёт к Луне, покинув канал ствола пушки, его пассажиры могли, как обычно, ходить внутри снаряда по дну, расположенному ближе к Земле (см. рис. 3а). При дальнейшем полёте пассажиры чувствовали, что их всё меньше и меньше прижимает к полу космического корабля, пока, наконец, в той точке, где Земля и Луна притягивают к себе тела с равной силой, но в противоположных направлениях, эти пассажиры стали свободно парить, оторвавшись от пола. Затем, приближаясь к Луне, они снова смогли ходить, но теперь уже по противоположной стороне своего корабля, обращённой к Луне. В начале полёта одна из находившихся в снаряде собак погибла от ран, полученных при запуске. Пассажиры выбросили её труп в люк на дне снаряда, но обнаружили, что он следует за снарядом в течение всего путешествия.
Рис. 3а. Неправильное предсказание. Жюль Верн полагал, что пассажир свободно летящего снаряда будет стоять на том дне снаряда, которое ближе к Земле или к Луне, в зависимости от того, притяжение которой из них сильнее, но что собака будет парить рядом со снарядом в течение всего путешествия.
Рис.3б. Правильным было бы предсказание, что и пассажир будет парить внутри снаряда в течение всего путешествия. Жюль Верн прав, описывая движение собаки.
Пассажиры жюльверновского космического корабля ощущали свой вес
Этот рассказ приводит к парадоксу, играющему решающую роль для теории относительности. Жюль Верн считал возможным, что гравитационное притяжение со стороны Земли способно прижимать пассажира к стороне снаряда, обращённой к Земле, на первоначальном этапе путешествия. Он считал также естественным, что труп собаки будет всё время оставаться вблизи снаряда, так как и снаряд, и собака независимо друг от друга движутся по одной и той же траектории в пространстве. Но если собака летит снаружи рядом с космическим кораблём в течение всего путешествия, то почему бы и пассажиру не парить свободно внутри космического корабля? Ведь если бы мы распилили снаряд на две части, не стал ли бы пассажир, оказавшийся теперь «снаружи», свободно парить над полом?