Физика пространства - времени
Шрифт:
Инерциальную систему удаётся ввести, потому что все тела падают с одним и тем же ускорением
Инерциальную систему отсчёта было бы невозможно определить, если бы не существовало замечательного природного феномена. Все частицы различных размеров, формы и состава падают в одном и том же месте с одним и тем же ускорением относительно Земли. Если бы это было не так, наблюдатель внутри падающего космического корабля заметил бы относительное ускорение у разных частиц, даже когда эти частицы находятся вблизи друг друга. По крайней мере некоторые из частиц, покоившихся первоначально, вышли бы из состояния покоя, что означало бы непригодность космического корабля как инерциальной системы отсчёта согласно определению последней. В какой мере мы уверены в том, что все частицы в одном и том же месте, но разные по своему составу падают на Землю с одним и тем же ускорением? Как говорит легенда, Галилей бросал для проверки этого предположения
1) О том, производил ли в действительности Галлией этот эксперимент, см. книгу Lloyd W. Taylor, Phisics the Pioneer Science, Vol. 1, Dover Publications, New York, 1959, p. 25.
2) См. главу по эксперименту в теории относительности, написанную Дикке в книге Relativity, Groups, and Topology, ed. by C. and B. DeWitt, Gordon and Breach, New York, 1964, p. 173—177, или в книге R.H. Diсke, The Theoretical Significance of Experimental Relativity, Gordon and Breach, New York, 1964.
Из этого принципа вытекает, что для выяснения, является ли данная система отсчёта инерциальной, в качестве пробной частицы может быть использована частица, состоящая из любого вещества. Система отсчёта, инерциальная для пробных частиц одного вида, будет также инерциальной для пробных частиц любых других видов.
3. ПРИНЦИП ОТНОСИТЕЛЬНОСТИ
Перекрывающиеся инерциальные системы отсчёта движутся относительно друг друга прямолинейно и равномерно
Мы описываем движение пробных частиц по отношению к некоторой системе отсчёта, с тем чтобы выяснить, является ли эта система инерциальной. Движения тех же пробных частиц, а также их столкновения (если таковые происходят) могут быть описаны и по отношению более чем к одной инерциальной системе. Носителем одной системы отсчёта может быть космический корабль, выполненный в форме полого цилиндра (рис. 8, а), тогда как носителем другой системы отсчёта может быть подобная же конструкция с несколько меньшим диаметром, таким, чтобы при встрече с первой она могла пролететь внутри неё (рис. 8, б). При этом существует область пространства-времени, общая для внутренней части обоих кораблей во время их взаимного совмещения. Множество пробных частиц могут пролетать в том или ином произвольно выбранном направлении через эту область. Путь каждой из них будет прямолинейным, если изобразить его в координатах одной из систем отсчёта, а также в координатах другой, так как они обе являются инерциальными системами отсчёта. Такая прямолинейность путей возможна лишь благодаря тому, что любые две перекрывающиеся друг с другом инерциальные системы отсчёта движутся друг относительно друга равномерно. Напротив, если второй космический корабль включает двигатели и ускоряется во время прохождения сквозь первый (рис. 8, в), то по наблюдениям с этого второго корабля траектории пробных частиц будут искривлены. Если имеющееся оборудование позволяет заметить кривизну таких траекторий, то эту ускоренную систему отсчёта нельзя считать инерциальной.
а) Движение типичной пробной частицы, наблюдаемое в первой инерциальной системе.
б) Движение той же частицы, наблюдаемое во второй инерциальной системе отсчёта, движущейся относительно первой.
в) Движение той же пробной частицы, наблюдаемое в ускоренной, а потому неинерциальной системе отсчёта.
Рис. 8. Сравнение инерциальных систем отсчёта с ускоренной системой.
Если даны две инерциальные системы отсчёта, равномерно движущиеся друг относительно друга, то любая находящаяся в движении пробная частица будет относительно них сохранять величину и направление скорости своего движения неизменными, хотя бы даже эти величина и направление её скорости были совершенно различными в каждой из двух систем. В самом деле, ведь мы определили понятие инерциальной системы отсчёта так, чтобы в любой инерциальной системе был справедлив следующий закон механики (первый закон Ньютона): «Всякое тело сохраняет состояние покоя или прямолинейного равномерного движения, пока и поскольку оно не понуждается внешними силами изменить это состояние». Кроме этого закона механики, существуют и другие. Каждый из них также будет справедлив в любой инерциальной системе
отсчёта, о чём свидетельствует эксперимент.Относительность: законы физики одинаковы во всех инерциальных системах отсчёта
Сохраняют ли справедливость во всех инерциальных системах отсчёта и другие законы физики? Должен ли инженер-электротехник, рассчитывая электрические цепи для реактивного самолёта, применять иные законы электротехники на том основании, что самолёту предстоит двигаться? Не придётся ли пользоваться иными законами электромагнитного излучения при расчёте радиопередатчика для космического корабля, потому что этот корабль будет двигаться? Не придётся ли применять новые законы для истолкования экспериментов по столкновениям протонов с атомами мишени, если и компактный протонный ускоритель, и мишень, и счётчики частиц установлены на равномерно движущейся железнодорожной платформе? Насколько нам известно, ответом на эти три вопроса, как и на другие, подобные им, является «нет». Несмотря на самые усердные поиски, никто никогда не обнаружил каких-либо нарушений следующего принципа:
Все законы физики одинаковы во всех инерциальных системах отсчёта.
Это утверждение мы будем называть принципом относительности. Принцип относительности утверждает, что, установив законы физики в одной инерциальной системе отсчёта, мы можем применять их без всякого изменения в любой другой инерциальной системе отсчёта. В любой инерциальной системе отсчёта одинаковы как форма законов физики, так и численные значения физических констант, фигурирующих в этих законах. Все инерциальные системы эквивалентны с точки зрения любого закона физики. Выражая это утверждение негативно, можно сказать, что принцип относительности утверждает полную невозможность отличить одну инерциальную систему отсчёта от другой с помощью законов физики, точно так же, как измерительная рулетка и уровень землемера не могут показать, используем ли мы направление на север по Полярной звезде или по магнитной стрелке компаса!
О чём нам НЕ говорит принцип относительности
Отметим, о чём нам не говорит принцип относительности. Он не говорит, что промежуток времени между событиями А и Б будет одним и тем же, если его измерять в разных инерциальных системах отсчёта. Не говорит он и о том, что расстояние в пространстве между этими двумя событиями будет одним и тем же в этих двух системах. Как правило, ни промежутки времени, ни расстояния не будут одинаковыми в двух разных инерциальных системах, точно так же как разности северных и восточных координат ворот А и Б не совпадают при их определении дневным и ночным землемерами. В результате импульс данной частицы в одной системе будет иметь другое значение, чем её же импульс во второй системе. Даже скорость изменения импульса во времени будет, как правило, различной в разных системах отсчёта, и то же относится к величине силы. Поэтому при изучении движения заряженной частицы два движущихся относительно друг друга наблюдателя не обязательно определят одни и те же величины напряжённостей электрического и магнитного полей, действующих на эту частицу. Полная сила, вызванная совместным действием электрического и магнитного полей, будет разной в каждой инерциальной системе отсчёта.
И тем не менее, несмотря на всю свою специфичность в разных системах отсчёта, физика в них будет одна и та же! Физические величины в разных системах отличаются по своим численным значениям, но удовлетворяют одним и тем же законам. Скорость изменения импульса во времени, взятая в одной системе, равна полной силе, измеренной в этой же системе (второй закон Ньютона). Скорость изменения импульса во времени, взятая во второй системе, равна полной силе, измеренной во второй же системе:
лабораторная система
Скорость
изменения
импульса
во времени
<-
равна
– >
(Силе)
^
^
как правило,
НЕ равны
как правило,
НЕ равны
V
V
Скорость
изменения
импульса
во времени
<-
равна
– >
(Силе)
система ракеты
И не только законы механики, но и законы электромагнетизма и все прочие законы физики, выполняющиеся в одной инерциальной системе отсчёта, точно так же строго выполняются и в любой другой инерциальной системе отсчёта. Именно этот факт мы имеем в виду, когда говорим, что «принцип относительности утверждает полную невозможность отличить одну инерциальную систему отсчёта от другой с помощью законов физики».