Чтение онлайн

ЖАНРЫ

Информация или интуиция?
Шрифт:

ЗАДАЧИ КАВАЛЕРА де МЕРЕ

Первая состояла в том, чтобы узнать, сколько раз надо метать две кости, чтобы надеяться получить наибольшее число очков, то есть двенадцать. Как мы скоро увидим, эта задача весьма простая.Вторая задача много сложнее. Страстный игрок, де Мере чрезвычайно интересовался следующим вопросом: каким образом разделить ставку между игроками в случае, если игра не была окончена?Пытаясь решить, задачи де Мере (главным образом вторую из них), Б. Паскаль в 1654 году начал переписываться с другим крупнейшим французским математиком — П. Ферма. Не будучи знакомы лично, благодаря переписке они стали близкими друзьями. П. Ферма решил обе задачи с помощью придуманной им «теории сочетаний». Решение Б. Паскаля было значительно проще. Он исходил из чисто арифметических соображений. Нисколько не завидуя П. Ферма, Б. Паскаль, наоборот, радовался совпадению результатов и писал ему: «С этих пор я желал бы раскрыть перед вами свою душу, так я рад тому, что наши мысли встретились. Я вижу, что истина одна и та же в Тулузе и в Париже».Приведем вкратце решение Б. Паскаля для второй задачи кавалера де Мере. Предположим, говорит Б. Паскаль, что играют два игрока и что выигрыш считается окончательным после выигрыша одним из них трех партий. Пусть ставка каждого игрока составляет 32 луидора, и предположим, что первый уже выиграл две партии (ему не хватает одной), второй выиграл одну (ему не хватает двух). Им предстоит сыграть еще партию. Если ее выиграет первый, он получит всю сумму, то есть 64 луидора; если второй, у каждого будет по две выигранные партии, шансы обеих будут равны, и в случае прекращения игры каждому, очевидно, надо дать поровну.Итак, если выиграет первый, он получит 64 луидора. Если выиграет второй, то первый получит лишь 32 луидора. Поэтому, если оба согласны не играть предстоящей партии, то первый вправе сказать:— Тридцать два луидора я получу во всяком случае, даже если я проиграю предстоящую партию, которую мы согласились признать последней. Стало быть, 32 луидора мои. Что касается остальных 32, может быть, их выиграю, я, может быть, вы. Поэтому разделим сомнительную сумму пополам!Значит, если игроки разойдутся, не сыграв последней партии, то первому надо дать 48 луидоров, или же три четверти всей суммы, второму 16 луидоров, или одну четверть, из чего видно, что шансы первого из них на выигрыш втрое больше, чем второго (а не вдвое, как можно было бы подумать при поверхностном рассуждении).Конечно, все это пока еще не математика, а скорее рассуждения, основанные на здравом смысле. Но вот что главное — здесь делается попытка оценить количественно то, что, казалось бы, по самой своей сути никакой количественной оценке не подлежит. И до Б. Паскаля ничего подобного никому и в голову не приходило. Математики всегда гордились (да и сейчас гордятся) именно тем, что выводы их науки справедливы всегда, при любых условиях. Дважды два, говорят они; всегда четыре —- и сегодня, и через миллион лет, и на Земле, и на любой другой планете. А тут – на тебе! Спрашиваете вы, допустим, у некоего специалиста: будет ли завтра дождь? Специалист отвечает, мол, девяносто шансов из ста за то, что дождя не будет, а десять шансов за то, что дождь пойдет. Как это понимать? Особенно в том случае, если дождь все-таки пойдет. Куда тогда подеваются эти самые девяносто шансов?И вот оказывается, что человеческому гению под силу даже такая задача: применить точные количественные меры именно там, где по самой сути ничего точного, казалось бы, быть не может. Конечно, большую роль здесь сыграло и то, что к этому времени человечеству уж очень нужны были такие методы.И здесь невозможно удержаться, чтобы не поудивляться еще раз, до чего же все-таки везет дуракам! Ведь кавалер де Мере, формулируя свои задачи, явно ни о чем, кроме игры в кости, не думал. А что получилось? .Возьмем хотя бы первую задачу: сколько раз надо метать кости, чтобы надеяться получить наибольшее число очков? Заметьте, что, например, вопрос, сколько надо бросить в землю семян, чтобы надеяться получить столько-то растений, или вопрос, сколько надо выпустить снарядов, чтобы надеяться поразить цель, это та же самая первая задача кавалера де Мере. Вряд ли нужно добавлять еще что-нибудь для доказательства

важности подобных задач. Обратите также внимание на словечко «надеяться». Оно имеет очень большое значение, так как входит в терминологию науки теории вероятностей.

ВЕРОЯТНОСТЬ И ЧАСТОТА

Итак, теория вероятностей — это раздел математики, занимающийся вычислением количественных оценок в условиях, когда некоторые события могут или наступить, или не наступить, и при этом считается, что отсутствует даже принципиальная возможность точно предсказать наступление каждого такого события. Подобные события получили название случайных. Случайное событие представляет собой основной объект изучения в теории вероятностей. Любой из вас приведет какое угодно количество примеров случайных событий, а мы пока что воздержимся от этого.Первое, что сделал Б. Паскаль, — это предложил присваивать каждому случайному событию некоторую численную меру, называемую вероятностью его наступления. Вероятность — положительное число, заключенное между нулем и единицей. Вероятность достоверного события, то есть такого, наступление которого можно предсказать заранее (утром солнце взойдет), принимается равной единице. Вероятность невозможного события, то есть такого, которое в рассматриваемой ситуации никогда не наступает, принимается равной нулю. Вероятность события, которое может наступить или не наступить, — больше нуля и меньше единицы. Интересно заметить, что обратные утверждения неверны. Событие, вероятность наступления которого равна единице, все-таки может и не наступить, а событие, вероятность которого равна нулю, может наступить хотя бы принципиально. Но это уже тонкости теории вероятностей.Чтобы все сказанное стало более понятным, давайте рассмотрим такой пример. Предположим, что мы хотим определить частоту выпадания герба при бросании монеты. (Частотой в данном контексте называется отношение числа случаев, в которых получен рассматриваемый исход (выпал герб) к общему числу случаев.) Ясно, что эта частота должна приближаться к величине 0,5. Обычно, когда монету бросают много раз подряд, все так и получается: при увеличении количества бросаний частота выпадания герба, то есть количество случаев, когда выпал герб, поделенное на общее количество бросаний, приближается к 0,5.Знаменитый статистик К. Пирсон подбрасывал монету 24000 раз подряд — то ли делать ему было нечего, то ли уж очень захотелось воочию увидеть, как эта самая, частота приближается. И действительно, оказалось, что из 24000 бросаний герб выпал 12012 раз. Как видите, частота оказалась очень близкой к 0,5.Все-таки хочется обратить ваше внимание, во-первых, на то, что герб выпал не ровно 12000, а 12012 раз. Эти 12 еще составят предмет самостоятельного разговора. Второе замечание — более общее. Нет никакой гарантии, что при дальнейшем увеличении количества бросаний частота не начнет отклоняться от величины, принимаемой за вероятность.Теперь мы вплотную подошли к рассмотрению еще одного примера. Состоит он в» следующем. Предположим, что мы бросили монетку сто раз подряд и сто раз подряд выпал герб. Такое, хоть и редко, но вполне может случиться. Бросаем монетку в сто первый раз, но перед этим задаем себе вопрос: что вероятнее при сто первом бросании — выпадание герба или выпадание решки? Вы, конечн., скажете, что если только что сто раз подряд выпадал герб (предполагается, что монета правильная), то уж сейчас-то наверняка выпадет решка. Как бы не так! Вероятность выпадания решки при сто первом бросании точно такая же, как и вероятность выпадания герба, и равна она 0,5.Действительно, ведь события, состоящие в выпадании герба или решки при данном бросании, суть события независимые. Их вероятность ничуть не зависит от того, что происходило при предыдущих бросаниях. И вообще, при подсчете частот нет никакого рецепта, подсказывающего, с какого момента надо начинать считать. Вот и получается: как бы сильно частота ни отклонилась от вероятности (в только что рассмотренном примере (сто бросаний — сто гербов), частота выпадания герба оказалась 1 вместо 0,5), это совсем не значит, что вот теперь-то она должна начать приближаться. Приближается она опять же в среднем. Иначе говоря, чем больше серий опытов мы проведем, тем вероятнее, что средняя частота окажется достаточно близкой к вероятности, Но опять-таки «вероятнее».

Мы с вами достаточно подготовлены, чтобы решить первую задачу кавалера де Мере. Итак, сколько раз надо метнуть две кости, чтобы можно было надеяться на выпадание 12 очков?На первый взгляд задача кажется очень простой (ее решил сам кавалер де Мере). Но на деле это не так. Вся загвоздка в том, как понимать слово «надеяться». Начнем рассуждать так, как мы это делали уже не раз. Две игральные кости могут упасть на стол 36 различными способами: 1 и 1, 1 и 2, и т. д. Поскольку мы считаем кости правильными, то у нас нет никаких оснований предпочесть какой-нибудь один или группу способов получить 12 очков, то есть 6 и 6 может образоваться одним-единственным способом. Отсюда мы приходим к заключению, что вероятность выпадания 12 очков равна 1/36.О чем это говорит? Ровным счетом ни о чем. Бросьте кости один раз, и у вас либо выпадут 12 очков, либо нет. (Если выпадет с первого раза, в этом случае вы можете наделить кости (или себя!) свойством иметь интуицию.) Будем, однако, рассуждать дальше. Число способов не получить 12 очков равно, очевидно, 35, а вероятность не получить 12 очков равна 35/з6. Бросаем кости 36 раз подряд. Вероятность того, что и в этом случае мы не получим 12 очков, равна, (35/з6)36~0,36. Тех, кому неясно, почему так получилось, просим посчитать число способов, которыми могут упасть две кости при 36-кратном бросании. Вероятность того, что при 36-кратном бросании выпадет 12 очков, равно 1 — 0,36 = 0,64,Если провести, скажем, сто серий по 36 бросаний в каждой, то, как нам говорит проведенный выше расчет, примерно в 64 сериях из ста с большой степенью вероятности можно ожидать однократное выпадание 12 очков. Только что сказанное есть факт, получаемый с помощью науки, называемой теорией вероятностей. А вот можно ли в таких случаях надеяться — это уж пусть кавалер де Мере решает для себя сам. Мы не будем ему в этом помогать, а удовлетворимся тем, что мы заодно ответили на такой вопрос: вероятность 1/36— это много или мало?Теперь мы знаем: если вероятность некоторого события равна 1/36, то при 3600-кратном повторении ситуации (3600 = 100-36), вызывающей появление данного события, «можно надеяться», что это событие совершится около 64 раз. Но может и не совершиться ни разу.Никаких гарантий на этот счет теория вероятностей не дает.Обычно специалисты по теории вероятностей рассуждают так. Мол, основное назначение теории вероятностей состоит в том, чтобы по известным вероятностям простых событий (предполагается, что вычислить эти вероятности достаточно просто) точно вычислять вероятности сложных событий.Все это совершенно справедливо. Теория вероятностей есть раздел математики, и, если так можно выразиться, внутри этого раздела все утверждения отвечают требованиям математической строгости. И действительно, теория вероятностей позволит определить, к примеру, вероятность аварии самолета, если известны вероятности выходов из строя каждой из нескольких десятков тысяч составляющих этот самолет Деталей. Еще раз повторяем — расчет можно выполнять совершенно точно, но при этом остаются два «но». Во-первых, мы никогда не будем знать точно вероятность для каждой из деталей, а во-вторых, даже зная вероятность аварии самолета (пусть она равна, скажем, 0,0001 — это очень малая вероятность), мы все же ничего не сможем сказать в ответ на вопрос: будет иметь место авария в данном рейсе или нет? Здесь та же самая ситуация, что и со стократным бросанием монеты.Что же это за наука такая, скажете вы, результаты которой, по существу, ничего не означают?Столь категорическое утверждение, конечно, не будет правильным. С помощью теории вероятностей уже было решено и ежедневно решается множество задач, в том числе имеющих огромное значение для науки и практики.Но справедливо и то, что в ряду других математических дисциплин теория вероятностей, прямо скажем, отличается большим своеобразием.Вернемся, однако, к самой теории и обсудим подробнее вторую задачу кавалера де Мере. Решение этой задачи, найденное самим Б. Паскалем, мы уже приводили раньше. Но в данном случае нас интересует не решение, а вообще правомочность постановки подобных задач. Вторая задача тем и отличается от первой, что в известной степени она иллюстрирует применение методов теории вероятностей к некоторой жизненной ситуации.Сформулируем ее для себя следующим образом: как справедливо разделить ставку, если игра не закончена, но можно вычислить вероятности выигрыша для каждого из игроков? Главный вопрос, на наш взгляд, состоит именно в том, можно ли говорить вообще о справедливом дележе, если игра не закончена? Кстати, совсем необязательно играть. Можно поставить вопрос шире. Как соотносятся между собой категории справедливости в общежитейском понимании этого слова и категория вероятности?Постараемся показать, что вопрос этот отнюдь не праздный.Все азартные (а в общем-то, и необязательно азартные) игры можно разделить на два класса. К первому классу отнесем игры, в которых вероятность выигрыша перед началом игры одна и та же для каждого игрока. (Правильно говорить не о вероятности, а о математическом ожидании выигрыша, но мы с вами не знаем, что это такое.) Ко второму классу отнесем игры, не обладающие этим свойством.Рассмотрим сначала игры первого класса. Пусть, например, два игрока играют в орлянку. Доказано, что если монета правильная и если ни один из игроков не делает явных ошибок, то вероятность выигрыша для каждого приближается к нулю по мере увеличения количества бросаний. (Ясно, что при одном-единственном бросании один из партнеров должен выиграть и, следовательно, другой — проиграть.) Спрашивается, зачем вообще начинать игру и тратить на это время, если заведомо известно, что вероятность выигрыша (кстати, и проигрыша!) равна нулю?Примером игр второго класса может служить рулетка. Здесь имеется заведомо отличная от нуля вероятность выигрыша для одного из участников, а именно хозяина рулетки — крупье — и соответственно, отличная от нуля вероятность проигрыша для всех остальных участников. Становится совсем непонятным, зачем начинать играть в рулетку и подобные игры, если заведомо известно, что имеется отличная от нуля вероятность проиграть?Все дело в том, что игрок в азартные игры рассчитывает именно на отклонение частоты событий от- их вероятности. Вспомним, что у К. Пирсона при 24 000 бросаний монеты герб выпал 12012 раз. Если представить себе двух игроков, один из которых ставит всегда на герб, а второй — всегда на решку, то именно эти 12 лишних гербов и составят чистый выигрыш одного из игроков. Остальные 23 988 бросаний в известном смысле будут совершены впустую.

ВОТ СЧАСТЛИВЧИК!

Значит ли все сказанное, что теория вероятностей неприменима к задачам о справедливом разделе?
– Нет, это означает гораздо больше. Понятие вероятности применительно к одиночным событиям вообще не имеет смысла. Мы уже знаем достаточно много, чтобы прийти к такому выводу. Только что высказанное утверждение трудно принять; ведь в повседневной жизни мы привыкли, часто даже подсознательно, оценивать вероятности тех или иных имеющих к нам отношение событий и принимать решения на основе этих оценок. И все же это утверждение справедливо. Давайте порассуждаем еще немного’.Вот перед нами монета и игральная кость. Пусть некто подбросит монету, и у него выпал герб. Это не производит на нас никакого впечатления. Должно было выпасть одно из двух: или герб, или решка — причем мы хорошо знаем, что оба эти события имеют одинаковую вероятность наступить. Выпадание двух гербов подряд тоже в общем-то оставит нас равнодушными: мы знаем, что так случается, и довольно часто.Возьмем теперь игральную кость. Пусть некто бросает ее, и с первого же раза выпадает шестерка. Если он к тому же предварительно заключил пари, что так и произойдет, впечатление будет достаточно сильным. А если две шестерки подряд?— Вот счастливчик! — скажем мы и тем самым сразу раскроем наше подсознательное отношение к происходящим событиям.Действительно, если сто человек одновременно бросят по две кости, то две шестерки выпадут лишь у одного, двух, от силы — трех. Это и дает нам основание как-то выделить этих двоих-троих, назвать их счастливчиками. Добавим, однако, что даже у ста человек при одном бросании может не выпасть двух шестерок ни у кого.Наша подсознательная оценка вероятности есть не что иное, как рефлекс, который вырабатывается в результате определения частоты тех или иных событий.События, происходящие часто, мы считаем более вероятными, а события, происходящие редко, — менее вероятными. Если же некоторое событие (например, бросание кости) совершается один раз, то предварительное знание вероятности этого события ровным счетом ничего не дает. Пусть некто выбросил кость. Происходит одно из двух: или выпадает шестерка, или не выпадает. И то и другое может произойти (подчеркнем это еще раз) вне всякой зависимости от величины вероятности того и другого события.На первый взгляд представляется, что в случае так называемых практически достоверных или практически невозможных событий ситуация должна быть несколько иной. Ясно, например, что на Землю падают метеориты, и, следовательно, событие, состоящее в том, что метеорит попадет, скажем, вам на голову, в принципе возможно. Однако вероятность такого события исчезающе мала, мы с полным основанием считаем его практически невозможным. Поэтому и выходим на улицу без противометеоритных зонтиков.Однако мы не пользовались противометеоритными зонтиками и тогда, когда самого понятия вероятности еще не существовало. Рассуждая более строго, можно сказать, что наше поведение или, в более общем случае, реакция некоторой системы будет одной и той же независимо от того, равна ли вероятность данного события, скажем, 0,001 или 0,0001. Иными словами, здесь важна не количественная оценка вероятности, а лишь то обстоятельство, что она очень мала. Причем малость вероятности оценивается опять-таки через частоту (мы не реагируем на очень редкие события) главным образом на основе здравого смысла.Возможно, у некоторых читателей создалось впечатление, что авторы без достаточного почтения относятся к теории вероятностей. Спешим заверить, что это совсем не так. Современная теория вероятностей представляет собой весьма развитый раздел математики, обладающий внутренним совершенством и большой практической ценностью.Все, что говорилось в этой главе, коротко можно сформулировать так. Теория вероятностей оперирует со специальными величинами, исторически получившими название вероятностей. Окружающий нас мир устроен так, что при многократном повторении ситуаций, в которых возможны различные исходы, частота каждого з исходов по мере увеличения числа повторений стремится к некоторой постоянной величине, которая в большинстве случаев совпадает с вероятностью. Поэтому теория вероятностей представляет собой мощное средство для оценки частот. При этом, однако, весьма существенно, что само приближение частоты к вероятности происходит достаточно своеобразно, или, как мы говорим, сходится по вероятности. Именно тот, кто никогда не забывает этого последнего обстоятельства и умеет учитывать его при вычислениях, может считаться хорошим специалистом в теории вероятностей.Мы достаточно хорошо ознакомились с основными свойствами вероятности и можем вернуться к рассмотрению некоего обстоятельства, в котором существенным образом проявляется случайность.

ВОШЕДШИЕ, ОСТАВЬТЕ УПОВАНИЯ!

Обстоятельство, на которое мы намекнули, связано с необратимостью термодинамических процессов. Чтобы разобраться, что это такое, обратимся снова к бильярду — этой поистине универсальной модели, Совершен первый удар, и шары пришли в движение. Может ли случиться так, что, подвигавшись какое-то время, шары снова соберутся в пирамидку?Весь наш жизненный опыт говорит нам, что такого быть не может. Точно так же, как осколки разбитой чашки могут двигаться после ударов достаточно долго, по никто никогда еще не наблюдал, чтобы осколки снопа собрались в целую чашку. Как и частички дыма от сгоревшего полена не собираются снова вместе с тем, чтобы образовать целое полено. А что говорит на сей счет теория?Наше основное положение сводится к тому, что любой бильярдный шар в своем движении обязательно посетит все без исключения области бильярдного стола.Раз все без исключения, значит, рано или поздно он посетит и ту область, где он находился еще в составе пирамидки. Более того, с течением времени он будет посещать эту область вновь и вновь, поскольку среднее количество времени, которое он проведет в этой области, пропорционально ее размерам и времени наблюдений.Значит, с увеличением времени наблюдений будет увеличиваться и время, проведенное шаром в пределах рассматриваемой области.Сказанное справедливо для любого шара. Следовательно, обязательно рано или поздно наступит момент, когда шары снова соберутся в пирамидку. Однако расчеты показывают, что ждать этого придется, возможно, миллион лет, а пирамидка будет существовать лишь мгновение, после чего снова на миллион лет шары разойдутся и равномерно покроют поверхность бильярдного стола. Наблюдения подобного рода заставляют сделать вывод, что для природы естественны процессы, сопровождающиеся превращением пирамидки в равномерно распределенные шары, и, наоборот, неестественны, а точнее говоря, встречаются настолько редко, что практически этим можно пренебречь, процессы, когда произвольно движущиеся шары снова собираются в пирамидку.Все то же самое справедливо и для реальных физических систем. Теоретически процессы, происходящие в паровой машине, обратимы. Действительно, газ, заключенный в рабочем объеме цилиндра, оказывает давление на поршень. Мы говорим, что состояние газа характеризуется двумя параметрами: объемом и давлением. Расширяясь, газ приводит в движение поршень, и при этом совершается механическая работа. Однако если после этого работу совершим мы и вернем поршень в прежнее положение, то давление газа вернется к прежнему значению и все можно будет начинать сначала. Поэтому процесс расширения газа теоретически можно считать обратимым. На самом деле, однако, все обстоит не так. Расширяясь, газ не только совершает механическую работу по перемещению поршня, но и сообщает поршню определенную скорость, то есть кинетическую энергию. Вернув поршень назад, мы уже не получим прежних значений давления.Наконец, тепло всегда переходит от более нагретого тела к более холодному и никогда в противоположном направлении.На этом обстоятельстве, как уже говорилось, базируется теория, предсказывающая тепловую смерть вселенной.

КУДА ДЕВАЛАСЬ ИНФОРМАЦИЯ ?

Возможно, у читателя создалось впечатление, что, увлекшись термодинамическими рассуждениями, мы забыли, чему посвящена эта книга. Ничего подобного! Все сказанное до сих пор имеет прямое отношение к нашей главной героине — информации. Ведь до сих пор мы имеем единственное строгое определение информации как энтропии, взятой с обратным знаком. Поэтому утверждение о том, что все процессы в природе направлены в сторону увеличения энтропии, одновременно является утверждением о том, что все процессы в природе направлены в, сторону уменьшения связанной с этими процессами информации. На первый взгляд подобное утверждение представляется весьма правдоподобным. Действительно, все, что мы знаем, рано или поздно забывается. Книги приходят в негодность. Мы имеем лишь весьма приближенное представление о том, что происходило, к примеру, в Древней Греции. А ведь там когда-то бурлила жизнь, и каждый день каждого человека был до отказа заполнен информацией. Где она, эта информация?Да что там древние греки, попробуйте во всех деталях восстановить, о чем вы думали, скажем, на прошлой неделе! Совершенствование техники хранения информации лишь замедляет этот процесс, однако основная тенденция остается неизменной.Всякий раз, когда мы сталкиваемся с каким-то явлением природы, возникает естественное желание разобраться, почему так происходит. Вот и сейчас мы не можем не задать вопрос: почему мир устроен так, что все процессы направлены в сторону уменьшения количества информации?Американский математик У. Гиббс высказал предположение, что во всем виновато время. В механике Ньютона каждая

переменная обладает свойством симметрии. Это значит, что если изменения некоторой переменной описывают реально осуществимый физический процесс, то, изменив знак этой переменной на противоположный, мы снова получим описание реально осуществимого физического процесса. Если процесс состоит в том, что револьверная пуля после выстрела движется, скажем, с севера на юг, то, поменяв знак у переменной, описывающей расстояние, мы получим процесс, состоящий в том, что пуля движется с юга на север. Аналогичным образом, если пуля имеет данную, скорость (направленную опять-таки с севера на юг), то, поменяв знак, мы получим ту же скорость, но противоположно направленную. И то и другое вполне реально. Наконец, если в уравнениях небесной механики все знаки поменять на обратные, получится уравнение, описывающее, например, солнечную систему, в которой при наблюдениях с Земли Солнце встает на западе и заходит на востоке. Опять-таки нет ничего такого, чтобы запрещало существование подобной солнечной системы.А вот время, согласно У. Гиббсу, не обладает свойством симметрии. Время всегда направлено в одну лишь сторону, в сторону повышения энтропии и уменьшения информации. Если поменять знак у времени, мы получим вселенную, в которой разбитые чашки склеиваются, а дым превращается в березовые поленья.Однако обвинить во всем время — это значит заменить один вопрос другим. Существует другая теория, в которой все сводится к понятиям порядка и беспорядка. Например, считается, что струя пара, в которой все молекулы движутся, хотя и с разными скоростями, но в одном и том же направлении, может служить примером физической системы, в которой царит порядок.После взаимодействия с лопаткой турбинного колеса молекулы отскакивают от лопатки под различными углами, струя пара превращается в облачко пара, в котором молекулы движутся не только с различными скоростями, но и в самых различных направлениях. Такое облако — пример физической системы, в которой царит беспорядок.Как и в предыдущем случае, подобных примеров можно привести сколько угодно. И основной вывод тогда будет состоять в том, что вселенная стремится от состояний, характеризуемых большей упорядоченностью, к состояниям, характеризуемым меньшей упорядоченностыо, или что время, по У. Гиббсу, может протекать лишь в направлении от порядка к беспорядку. Такую трактовку законов природы вряд ли можно признать удачной. Начнем с того, что она снова не дает ответа на основной вопрос: почему? — а лишь заменяет понятия «состояние с малой энтропией» и «состояние с большой энтропией» понятиями «порядок» и «беспорядок».

ЧТО ЕСТЬ ПОРЯДОК!

Если считать слова «порядок» и «беспорядок» просто синонимами слов «состояние с малым значением энтропии» и «состояние с большим значением энтропии», то и сама теория, провозглашающая стремление к беспорядку, будет правильной постольку, поскольку справедливо второе начало термодинамики, но при этом она и не будет содержать ничего нового.Дело представляется иначе, если использовать понятия «порядок» и «беспорядок» в общепринятом человеческом смысле. Мы говорим, что элементы некоторой системы находятся в порядке, или, иначе, упорядочены. если состояния этих элементов подчиняются какому-либо закону. Например, о планетах солнечной системы мы так и говорим, что они расположены в порядке, характеризуемом тем, что кубы их расстояний от Солнца пропорциональны квадратам периодов обращений. Однако никто не сказал, что закон обязательно должен быть простым. Или, иначе, что степень порядка тем выше, чем проще закон, описывающий этот порядок. Скорей наоборот, чем сложнее закон, тем выше степень упорядоченности.Рассмотрим, к примеру, произведение какого-нибудь великого художника. Можно считать, что картина состоит из отдельных мазков красок. Эти мазки расположены в соответствии со строгими законами, одни из которых определяют соответствие между изображенным па картине и натурой, а другие — соответствие между изображенным на картине и той мыслью, .которую вложил в нее художник. Чем сложнее эти законы, тем, вообще говоря, талантливее мы считаем произведение. Возможно, это последнее утверждение у кого-то встретит возражение, но мы надеемся, что все согласятся хотя бы с тем, что в картине, представляющей собой истинное произведение искусства, степень упорядоченности отдельных элементов все-таки выше, чем, скажем, в картине, изображающей черный квадрат на желтом фоне.Интересно в этой связи проследить одну тенденцию, чаще всего наблюдаемую в научно-фантастической литературе. Прибытие людей на неизвестную планету — ситуация достаточно обычная для подобных произведений. И вот, увидев, например, пейзаж, состоящий из правильных прямоугольников, люди сразу решают, что планета населена разумными существами. Действительно, деятельности человека характерно стремление к правильным геометрическим фигурам, что частично может быть объяснено соображениями целесообразности.Однако вряд ли кто-нибудь будет возражать, что истинного величия архитектура достигает не в каком-нибудь стеклобетонном параллелепипеде, а, скажем, в контурах готического замка, больше всего напоминающих естественный горный пейзаж.Шенноновская теория информации дает возможность строго показать, что наибольшей информативностью, или, другими словами, наибольшим количеством информации, приходящейся на один элемент (символ), обладает сообщение, в котором все символы равновероятны, то есть расположены наиболее произвольным образом.Все сказанное позволяет нам сделать вывод, что теорию, основанную на понятиях порядка и беспорядка, вряд ли можно признать удачной. Мало того, что она не дает ответа на основной вопрос, она к тому же еще заставляет смещать наши представления о порядке и беспорядке.

СНОВА ШАРЫ

А что, если в попытках ответить на вопрос, почему отдельные процессы в природе необратимы, мы привлечем понятие случайности? Ведь любой процесс в больших физических системах, таких, как множество бильярдных шаров или молекул, сводится к последовательности элементарных актов. На бильярдном столе эти акты суть столкновения шаров между собой. Рассмотрим подробнее столкновение шаров, предположив сначала, что оно происходит в строгом соответствии со всеми законами механики.Вот шары движутся по двум сближающимся прямолинейным траекториям, вот они пришли в соприкосновение, разошлись и продолжают двигаться по двум, теперь расходящимся, траекториям. Стоп! Остановили время и пустили его наоборот. Теперь шары сходятся, двигаясь в обратном направлении по траекториям, по которым они расходились, входят в соприкосновение и, если все законы механики выполняются, теперь расходятся именно по тем траекториям, по которым они ранее сходились. В классической механике процесс столкновения шаров обратим. Следовательно, должен быть обратим и любой более сложный процесс, состоящий из отдельных элементарных столкновений.Представим себе теперь, что акт столкновения хотя бы в малой своей части содержит элемент случайности. Тогда, точно зная траектории, по которым шары сближаются, мы сможем лишь приближенно предсказать траектории, по которым они будут расходиться после столкновения.Если акт столкновения шаров содержит элемент случайности, то оно, столкновение, может быть строго описано в терминах теории вероятностей (теория вероятностей представляет собой строгую, а не приближенную теорию именно для случайных событий). В частности, теория вероятностей позволит предсказать величину угла, в пределах которого будут расположены траектории каждого шара после столкновения.Итак, если элементарный акт столкновения двух шаров содержит элемент случайности, то мы наблюдаем такую картину. Два шара движутся по строго определенным сближающимся траекториям, приходят в соприкосновение, и после этого каждый шар произвольно выбирает себе одну из траекторий в пределах данного угла. Как говорил А. Эйнштейн, бог, перед тем как задать тару определенную траекторию, каждый раз бросает кости.Ясно, что такой процесс необратим. ЕСЛИ после столкновения шаров мы поменяем знак у переменной времени, получится следующее. Расходившиеся шары начнут сближаться в точности по тем же траекториям, по которым они до этого расходились, а придя в соприкосновение, они уже не станут двигаться по своим прежним траекториям. Вместо этого каждый шар опять-таки выберет себе одну из траекторий в пределах данного угла. Но необратимость одного элементарного акта, конечно, означает необратимость и всего процесса, состоящего из таких элементарных актов. Более того, после каждого очередного столкновения неопределенность траектории, а следовательно, и положение шаров будут возрастать, И очень скоро наступит такое положение, когда определенно нельзя будет ничего сказать о положении шаров. Любые утверждения могут делаться только применительно к вероятностям положений и состояний.

КТО ЖЕ ПРАВ, А. ЭЙНШТЕЙН ИЛИ Н. БОР!

Теперь ясно, что предположение о случайности отдельных элементарных актов в природе полностью объясняет необратимость происходящих в ней процессов. Вопрос о том, действительно ли имеет место эта самая случайность, то есть опять-таки, кто прав, А. Эйнштейн или Н. Бор?Никакие макроскопические эксперименты не позволяют однозначно ответить на этот вопрос. Мы уже подчеркивали, и имеет смысл повторить еще раз, что второе начало термодинамики описывает лишь некоторое свойство массовых процессов. Причем это свойство проявляется только в вырожденных системах, то есть в системах, где существенным для их протекания является только наличие элемента в данный момент времени и в данной области пространства, и при этом совершенно безразлично, какой именно элемент на самом деле участвует в данном элементарном акте. Стоит, как мы говорили, снять вырождение, и система начнет вести себя совеем по-иному.Для удовлетворения второго начала термодинамики требуется также равновероятность отдельных микросостояний. Однако для такой равновероятности совсем необязательно, чтобы отдельные элементарные акты содержали элемент случайности. Если все элементарные акты будут совершаться в строгом соответствии с законами классической механики, но этих актов будет очень много и совершаться они будут над большим количеством элементов, то очень скоро система станет вести себя так, что все ее состояния окажутся равновероятными, или, во всяком случае, так, как если бы они были равновероятными. Вспомним, что вынести точное суждение по поводу вероятности можно лишь в том случае, если мы наблюдаем систему в течение бесконечного времени, или, что равносильно, наблюдаем бесконечное количество одинаковых систем.Лучшим доказательством сказанного является опыт работы с так называемыми генераторами случайных чисел. В современных ЭВМ реализуются алгоритмы, позволяющие получать последовательности чисел, распределение которых с любой наперед заданной точностью совпадает с соответствующим распределением случайных явлений. И в то же время эти числа получаются с помощью алгоритма, то есть строго детерминированным образом.Утверждение о том, что из случайной природы элементарных актов вытекает необратимость процессов, состоящих из этих актов, имеет и обратную силу. Если большинство процессов в природе действительно необратимы, значит, в их основе лежат случайные события. Казалось бы, нет лучшего доказательства случайной природы элементарных актов. Ведь разбитая чашка не склеивается! Но не станем торопиться. Наблюдая за разбитыми чашками, мы исследуем лишь локальные свойства природы в течение весьма небольших промежутков времени. А для однозначного ответа на вопрос о случайности необходимо убедиться в том, что необратимость процессов имеет место всегда, в сколь угодно больших областях пространства и в течение сколь угодно больших промежутков времени.Последняя фраза наводит нас на мысль: а не стоит ли поискать ответ на наш вопрос в космологии? Существует космологическая теория, которую впервые начал развивать советский ученый А. Фридман. Согласно этой теории все галактики, составляющие вселенную, разбегаются в разные стороны, причем скорость, с которой удаляется от наблюдателя каждая галактика, пропорциональна расстоянию от этой галактики до наблюдателя. Весьма интересно, что это утверждение справедливо независимо от того, где находится наблюдатель. Советуем читателю как следует поразмышлять над сказанным. Такие размышления позволят ему подметить весьма интересные свойства геометрии нашей вселенной.Нас интересует, однако, другое. В данный исторический период галактики разбегаются. А что будет дальше? В теории Фридмана содержится ответ на этот вопрос. Если средняя плотность вещества во вселенной меньше некоторого критического значения, галактики будут продолжать разбегаться. Такой процесс расширения вселенной, будучи необратимым, и представляет собой окончательное доказательство (на сей раз безапелляционное) случайности элементарных актов. Но это лишь в том случае, если средняя плотность вещества действительно меньше критического значения. Если это не так, то на смену периоду разбегания обязательно .придет период сближения. Галактики начнут двигаться по направлению друг к другу, и так будет продолжаться до тех пор, пока все вещество во вселенной не займет бесконечно малый объем, практически стянется в точку. Затем последует взрыв и все начнется сначала.Теория Фридмана практически является на сегодня общепринятой, хотя бы в той ее части, что вселенная возникла из первичного взрыва. Этому есть много экспериментальных доказательств, в частности так называемое реликтовое излучение. Что же касается прогноза на будущее, то здесь, как говорится, бабушка надвое сказала. Современные подсчеты средней плотности вещества во вселенной дают цифру, чуть меньшую критического значения. Однако ни из чего не следует, что ученые учли все вещество. Вполне возможно, что во вселенной существуют объекты, о которых мы пока Просто ничего не знаем. Ведь только недавно были обнаружены, скажем, черные дыры. Есть все основания предполагать, что истинная средняя плотность вещества все-таки больше критической. Вселенная не исчезнет бесследно, а возродится в очередном первичном взрыве, и так будет повторяться до бесконечности.С позиций вопросов, рассматриваемых в этой книге, нас больше всего интересует тот момент, когда все вещество вселенной стянется в точку. Энтропия точки (одного бильярдного шара), очевидно, равна нулю. Чему же равно количество информации, содержащейся в точке? Это количество информации равно значению энтропии вселенной в тот момент, когда она достигает своего максимального значения, иначе говоря, в тот момент, когда галактики перестанут разбегаться и вот-вот начнут сближаться. Вряд ли стоит спрашивать, о чем эта информация. О всей структуре будущей вселенной, и в том числе о всех чашках, которые возникнут в будущем взамен разбитых сегодня.Так выглядит представление об информации с позиций современной термодинамики и космологии.

ГАРМОНИЯ СФЕР

Коли уж мы упоминали выше труды древнегреческих ученых и философов, нельзя обойти молчанием одного из наиболее легендарных среди них, а именно Пифагора. Как математик Пифагор, несомненно, представляет собой особо яркую фигуру для всего рассматриваемого периода древнегреческой науки. Нельзя сказать то же о его философских воззрениях, хотя пифагорейство есть едва ли не самое долговечное философское направление изо всех когда-либо существовавших в Европе.В основу своих воззрений на природу вещей Пифагор и его последователи приняли магию чисел. Мир основан на гармонии, учили они. Иначе говоря, между всеми явлениями природы должны существовать простые численные соотношения. Законам простых численных соотношений должно подчиняться и строение вселениой. В те времена считалось, что каждая планета прикреплена к твердой сфере, движущейся определенным образом вокруг Земли. Пифагор утверждал, что радиусы этих сфер находятся также в простых численных соотношениях. Эти соотношения получили название гармонии сфер.Ясно, что после построения гелиоцентрической системы само понятие небесных сфер, а следовательно, и всякие рассуждения о существующей между ними гармонии потеряли смысл. Однако вопрос о гармонии сфер получил неожиданное продолжение. В 1766 году некто И. Тициус занимался переводом с французского языка на немецкий книги знаменитого философа и естествоиспытателя Ш. Бонне «Созерцание природы». Между шестым и седьмым абзацами в главе четвертой первой части этой книги И. Тициус включил дополнительный текст:«Если обратить внимание на расстояния между соседними орбитами планет, то можно заметить, что эти расстояния увеличиваются почти пропорционально радиусам самих орбит. Если принять расстояние Сатурна от Солнца за 100 единиц, то Меркурий находится от Солнца на расстоянии 4 единиц, Земля 4 + 6 = 10 единиц, Марс 4+ 12= 16 единиц. Но при переходе от Марса к Юпитеру имеется отклонение от этой точности. После Марса такой прогрессии отвечает расстояние в 4 + 24 = 28 единиц, но на этом расстоянии мы не видим ни большой планеты, ни планетного спутника. Неужели создатель оставил это пространство пустым? Нив коем случае! Уверенно держу пари, что это место занимают еще не открытые спутники Марса; позвольте добавить, что Юпитер, возможно, также имеет спутников, которые еще не наблюдались. Далее мы открываем для себя положение Юпитера, отвечающее 4 + 48 = 52 единицам; Сатурн же находится на расстоянии 4 + 96 — = 100 единиц. Какое удивительное соотношение!»Трудно сказать, почему И. Тициус опубликовал эти соображения в столь скромной форме: не в виде самостоятельной статьи или хотя бы примечания к переводу книги Ш. Бонне. Определить авторство в данном случае мог только человек, сличающий французский и немецкий тексты. Естественно, что сначала никто не обратил внимания на закон Тициуса.Во втором издании перевода, вышедшем через шесть лет, И. Тициус поместил тот же самый текст уже в виде примечания переводчика. Как раз в это время И. Боде заканчивал подготовку второго издания своей книги «Руководство по изучению звездного неба». И. Боде обнаружил примечание И. Тициуса и был глубоко поражен согласием между этим законом и радиусами орбит известных в то время шести планет. И. Боде тотчас же уверовал в этот закон и включил его в текст своей книги в качестве примечания. Поскольку авторитет И. Бо-де как ученого был неизмеримо выше авторитета скромного переводчика И. Тициуса, закон получил название закона Боде и лишь в дальнейшем — закона Тициуса — Боде.

СУДЬБА ЗАКОНА

В начале закону Тициуса — Боде не придавали большого значения. Положение, однако, изменилось после того, как в 1781 году В. Гершель открыл «любопытный объект — либо туманную звезду, либо, возможно, комету», который при дальнейшем изучении он счел кометой, так как объект перемещался. Несколькими месяцами позже А. Лексель пришел к выводу, что объект, открытый В. Гершелем, является планетой, и опубликовал первые вычисления ее круговой орбиты. Планету назвали Ураном (название, кстати, предложил И. Боде). Каково же было удивление астрономов, когда оказалось, что среднее расстояние новой планеты от Солнца отклоняется от числа 196, предсказываемого законом Тициуса —- Боде, всего лишь на два процента. Закон Тициуса — Боде оказался в центре внимания: одно дело расположить в некотором порядке уже известные числа, а другое дело предсказать существование еще неизвестной планеты.Астрономы сразу обратили внимание на то, что согласно закону Тициуса — Боде между Марсом и Юпитером (если, конечно, этот закон справедлив) должна быть еще одна планета. Начались усиленные поиски, и вот в январе 1801 года Дж. Пиацци открыл объект, получивший название Цереры. Церера была первой среди множества мелких планет, составляющих так называемый пояс астероидов. Среднее расстояние от Цереры до Солнца оказалось равным 27,67, что очень хорошо согласовывалось со значением 28, отвечающим закону Тициуса— Боде. Затем была открыта малая планета Паллада, за ней последовали Юнона в 1804 году и Веста в 1807-м. Правда, среднее расстояние от Паллады до Солнца оказалось равным 26,70, что уже с большой натяжкой можно было согласовать с законом Тициуса — Боде. Объяснение не замедлило появиться. Цереру, Палладу, Юнону, Весту и другие открытые вслед за ними объекты было решено считать осколками ранее существовавшей и взорвавшейся по неизвестной причине большой планеты.Закон Тициуса — Боде переживал настоящий триумф. Шутка ли! Количество известных планет за столь небольшой промежуток времени увеличилось с шести до восьми (если, как уже говорилось, Цереру, Палладу, Юнону и Весту считать частями одной большой планеты), и обе новые планеты попали именно на те места, которые им предназначались законом Тициуса — Боде.Но продолжался этот триумф — увы! — недолго. Многочисленные наблюдения за поведением планеты Уран, а также за орбитами комет, в частности знаменитой кометы Галлея, с уверенностью говорили о том, что должна существовать по меньшей мере еще одна планета, расположенная за Ураном. Все попытки обнаружить эту планету там, где она должна быть согласно закону Тициуса — Боде, то есть на расстоянии 38,4 астрономической единицы от Солнца, не давали никакого результата. Такую планету несколько раз «находили», но тут же теряли. Кончилось тем, что Ж. Леверье, один из многих, кто проводил расчет, пользуясь в том числе и законом Тициуса — Боде, обратился к астроному И. Галле с личной просьбой поискать планету в определенном месте небосвода. В первую же ночь своих наблюдений 23 сентября 1846 года, И. Галле обнаружил планету почти в том самом месте, которое было предсказано.А вот все, что происходило дальше, нельзя назвать иначе, как иронией судьбы. Планета действительно была найдена и получила название Нептун, но, как показали расчеты, единственным параметром, согласующимся с вычислениями Ж- Леверье, оказалась ее истинная долгота на 1 января 1847 года. Для большой полуоси орбиты было получено значение 30,25 астрономической единицы, что уже ни с какими натяжками нельзя считать близким к величине 38,4, следующей из закона Тициуса— Боде. Окончательный удар по закону был нанесен после открытия в 1930 году планеты Плутон, среднее расстояние которой от Солнца составляет 39,5 астрономической единицы вместо 77,2, следующих из закона Тициуса — Боде.

Поделиться с друзьями: