Чтение онлайн

ЖАНРЫ

Информация или интуиция?
Шрифт:

ИЗ ОДНОЙ КЛЕТКИ

Опишем еще один опыт. Ученые взяли оплодотворенную яйцеклетку мыши и заменили имеющийся там набор хромосом на другой, взятый из ядра клетки кожи другой мыши. Затем яйцеклетку поместили на место в матку первой мыши, где она нормально развивалась. В положенный срок родился мышонок, полностью тождественный той особи, из кожной клетки которой был взят набор хромосом.Таких опытов проводилось большое количество, и не только с мышами. Результаты их на сегодня с полной очевидностью доказывают: набор хромосом каждой клетки данного организма содержит полное, исчерпывающее описание всего организма. С этой точки зрения приведенный нами пример, касающийся возможности реконструкции какого-либо давно умершего лица, по существу, совсем не фантастичен.Итак, набор хромосом, имеющийся в любой клетке, содержит всю информацию, необходимую для того, чтобы можно было воссоздать другой, в точности такой же организм. Это доказано, но имеется другой вопрос, над решением которого биологи бьются давно и пока еще безуспешно.Развитие Организма из яйцеклетки совершается путем последовательных делений (митозов) исходной клетки на две, четыре, восемь, шестнадцать и т. д. новых клеток. Сам процесс деления представляет одну из интереснейших глав – современной биологии, и опять-таки мы не можем здесь уделить ему даже несколько строчек. Вопрос же, который нас интересует, состоит в следующем. Каждая новая клетка, возникшая после деления, имеет ядро, содержащее полный набор хромосом, в точности такой же, как у материнской яйцеклетки. Говоря нашими словами, каждая новая клетка содержит в точности такую же информацию, какую и ее породившие. Почему в таком случае, начиная с определенных стадий деления, получаются различные клетки, как уже отмечалось, весьма непохожие друг на друга?И второй вопрос, тесно связанный с первым: почему каждая новая клетка занимает в образующейся структуре каждый раз одно и то же строго определенное место?

КЛЕТКА-ФОНАРИК

В 1944 году вышла книга А. Гурвича «Теория биологического поля». А. Гурвич — биолог-исследователь с яркой и сложной творческой судьбой. Многолетние поиски физико-химических причин клеточного деления привели его к открытию митогенетического {то есть происходящего в момент деления клетки) излучения. Судьба этого замечательного открытия, сделанного в 1923 году, необычна. В свое время оно принесло автору мировую славу. Исследования в области митогенеза развернулись широким фронтом. Излучение живых систем было использовано как исключительно тонкое орудие анализа молекулярных перестоек в клетке. Но в дальнейшем это направление было забыто, и только в наши дни интерес к нему постепенно повышается.Процесс развития организма из яйцеклетки лучше всего разобрать на каком-либо конкретном примере. Наиболее удобный объект для эмбриологических исследований — морской еж. Его яйцеклетки нетрудно оплодотворить искусственно, и затем под микроскопом можно наблюдать весь ход развития зародыша. Круглая, прозрачная и на вид совершенно однородная яйцеклетка вскоре делится на две, четыре, восемь и более клеток, которые называются бластомерами. Бластомеры располагаются не как попало, а строго определенным образом. Величина разных бластомеров различна. Например, когда образовалось шестнадцать бластомеров, восемь из них, средних по размерам, располагаются в виде венца на верхнем полушарии зародыша. Ниже их располагаются четыре самых больших, а еще ниже — четыре самых маленьких (рисунок на странице 141).Это только первые проявления пространственных закономерностей развития. Позже, когда бластомеров становится больше, они раздвигаются

и зародыш превращается в полый шар — бластоцисту. После этого начинаются основные процессы, определяющие специфическую форму зародыша. Продолжая размножаться, различные его клетки начинают смещаться друг относительно друга в различных направлениях.Почему же различные клетки двигаются в разных направлениях? Откуда клетка знает, куда и с какой скоростью ей смещаться? Как различные клетки согласовывают направление и относительную скорость своих движений? Все те же вопросы, которые возникают у нас и применительно к термодинамическим системам, и применительно к электронам в атоме, и, наконец, вот сейчас применительно к живой клетке.Чтобы ответить на эти вопросы, прежде всего надо, выяснить, вложена ли программа движения данной клетки или группы клеток внутрь ее или же программа определяется извне. Ответ можно получить экспериментальным путем, исходя из следующих простых соображений. Если вся программа поведения заключена внутри клетки, то последняя должна вести себя одинаковым образом вне зависимости от места в зародыше и вне зависимости от окружающих частей зародыша. Если же при изменении положения данной клетки в зародыше изменится и путь ее развития, значит, клетка управляется извне.На одной из самых ранних стадий развития зародыш состоит из двух совершенно одинаковых бластомеров (см. наш рисунок). При нормальном развитии из одного бластомера развивается точно половина зародыша. Что можно ожидать, если оба бластомера разъединить и заставить их развиваться изолированно? Получим ли мы из каждого половинку зародыша? Таков должен быть результат, если считать, что вся программа будущего поведения каждого бластомера заложена внутри его.Подобный опыт был поставлен впервые еще в 1892 году немецким эмбриологом Г. Дришем. Оказалось, что из разделенных бластомеров развиваются нормальные личинки, но вдвое меньших размеров.А. Гурвич начал с того, на чем остановился Г. Дриш. Он четко ограничил факторы, не связанные с управлением (стартовые) и непосредственно управляющие. Затем внимательно исследовал именно последние, использовав при этом ряд математических приемов. В результате пришел к следующей гипотезе: клеточные ядра являются источниками каких-то выходящих за их пределы направленных (векторных) факторов, которые регулируют движение всех находящихся поблизости клеток. Эти векторные факторы создают в пространстве вокруг клеточного ядра некоторое векторное поле. Если несколько клеточных ядер оказывается в тесном соседстве (как это обычно и бывает в зародыше), то их поля складываются по обычным правилам векторного сложения.С этой точки зрения формообразовательное воздействие «целого» на данную клетку зародыша рассматривается как действие на эту клетку суммарного вектора от всех расположенных не слишком далеко клеточных ядер. По мере удаления клеток их взаимодействие быстро ослабляется, поскольку интенсивность действия поля убывает обратно пропорционально квадрату расстояния.

«ЧЕЛОВЕК-КРОЛИК»

Описание эксперимента с зародышами морского ежа Мы позаимствовали из статьи Л. Белоусова, опубликованной в журнале «Наука и жизнь» (1967, № 3). Перед тем как высказать собственное мнение по этому поводу, мы приведем еще несколько фактов.Каким образом организм узнает, что пересаживаемая ему ткань имеет чужеродное происхождение? Почему он отвергает ее, даже если она могла бы его спасти? Какие механизмы нарушаются в клетке при раке? Все эти вопросы имел в виду доктор Гаррис из Оксфордского университета, ставя свой поразительный эксперимент. Вместе со своим коллегой доктором Уоткинсом он создал гибридные сочетания клеток, принадлежащих различным видам животных и человека. Ими созданы сочетания человек-мышь, человек-кролик и даже человек-курица.Метод Гарриса основан на одном медицинском наблюдении, сделанном сто лет назад. Именно тогда стало известно, что некоторые болезни, в частности вирусные, вызывают появление в организме клеток с несколькими ядрами. Объяснение этому нашлось недавно, лет десять назад. Вирус, оказавшийся в точке соприкосновения двух клеток, растворяет в этом месте оболочки клеток, их цитоплазмы сливаются. В результате получается одна клетка со смешанной цитоплазмой и двумя ядрами.В конце 1965 года Гаррис и Уоткинс сообщили в английском журнале «Нейчур» о полном успехе своего опыта. С помощью вируса гриппа они получили гибридную клетку человека и мыши. Позже им удалось так же успешно получить гибридные сочетания, сливая клетки человека с клетками кролика и курицы. А это уже означало, что возможности клеточной гибридизации не ограничиваются только млекопитающими — они простираются на весь тип позвоночных.Гибридная клетка обладает двумя ядрами, если она получена от соединения двух клеток, или несколькими, если было соединено несколько клеток. Как же теперь будут вести себя ее ядра? Будут ли они сосуществовать, сотрудничая или воевать друг с другом?Наблюдения показали, что оба ядра продолжают жить нормально. С помощью радиоактивных изотопов удалось проследить, что ядра продолжают вырабатывать РНК (рибонуклеиновую кислоту), управляющую синтезом белков цитоплазмы. Больше того, оба ядра проходят нормальный митоз. Если митоз обоих ядер гибридной клетки наступает одновременно, то результат получается особенно интересным. Каждый из хромосомных наборов человека сливается с одним из наборов кролика. Таким образом, двухъядерная гибридная клетка дает две дочерние клетки, каждая из которых снабжена лишь одним огромным ядром — получеловеческим, полукроличьим. С этого момента исследователи располагают настоящими гибридными клетками «человек-кролик», нормально обладающими лишь одним ядром и продолжающими расти и делиться на дочерние клетки-гибриды.Многочисленные опыты с пересадками органов, и не только с пересадками, однозначно доказали, что клетки организма умеют распознавать посторонние клетки. До сих пор не было точно известно, каким образом им удается это делать, где происходит процесс распознавания.Как показали опыты Гарриса, на уровне ядра и цитоплазмы прекрасно сосуществуют даже столь различные клетки, как клетки человека и кролика. Значит, распознавание происходит не внутри клетки, а на уровне клеточных оболочек. Именно оболочка узнает «чужака» и притом узнает его именно по оболочке.Гибридные клетки могут жить и делиться. Это значит, что цитоплазма кролика воспринимает сигналы, передаваемые хромосомами человека, а цитоплазма человека принимает информацию от хромосом кролика. Суть передаваемых сообщений сводится к записанному в генетическом коде синтезу белков. То, что хромосомы человека и кролика могут управлять этим синтезом совместно, подтвердило предположение исследователей: язык генетического кода является, по-видимому, универсальным. Как известно, в клетке постоянно идет взаимодействие между ядром и цитоплазмой. Конечно, роль ядра трудно переоценить. Именно оно управляет синтезом белков цитоплазмы. Но при этом оно учитывает потребности клетки, то есть управляет в зависимости от информации, поступающей от цитоплазмы.Механизм здесь примерно такой. Информация с гена переписывается на молекулу-посредник РНК. Затем по этой РНК строится белок. Все эти процессы происходят лишь в том случае, если присутствует специальный катализатор, названный РНК-полимеразой. Только при условии наличия в цитоплазме этого фермента происходит синтез белка. Каждая цепочка РНК-посредника начинается с РНК-полимеразы, примыкающей непосредственно к гену. Более того, клетка может не делиться в течение достаточно долгого времени. Сигнал на деление поступает опять-таки от цитоплазмы.Можно сказать, что цитоплазма непрерывно посылает в ядро бюллетени о своем здоровье. А ядро в ответ на это включает то тот, то другой синтез. Оксфордские опыты показывают, что язык цитоплазмы так же универсален, как и язык генетического кода.

ОСТОРОЖНО — ХИМЕРЫ

Какие еще возможности открывает метод гибридизации по Гаррису? В Гарвардском университете был проделан эксперимент по гибридизации клеток различных видов хомяка. Сливая раковые клетки с нормальными, обнаружили, что во всех случаях получившиеся гибриды теряли способность развиваться в раковую опухоль. Значит ли это, что нормальное состояние «доминирует» над раковым? Делать какие-либо выводы на основании одной серии исследований рано. Однако метод гибридизации, безусловно, открывает новые возможности для экспериментов по выяснению механизмов, вызывающих рак.В частности, с его помощью выяснено обстоятельство, по которому имелись разногласия. Вирусы, вызывающие рак, удавалось до сих пор выделить только у животных. У человека канцерогенные вирусы пока не найдены. Это, конечно, не значит, что их нет. Известно, что у животных вирус, заразив клетку, становится «невидимкой». Что с ним происходит? Исчезает ли он вовсе или остается латентным и невидимым?Здесь мнения ученых разделились. Метод Гарриса, по-видимому, решает этот спор. Гибридные клетки в данном эксперименте состояли из раковых клеток, в которых вирус не был обнаружен, и из нормальных клеток, очень чувствительных к этому вирусу. И в гибридных клетках вирус появился снова. Значит, он не исчезал. Он оставался замаскированным в раковых клетках. Стало быть, то, что вирус в раковых клетках не обнаруживается, совсем не означает, что этого вируса нет.

САМЫЙ СОВЕРШЕННЫЙ ДВИГАТЕЛЬ

Суммируя все сказанное, мы приходим к выводу, что живой организм — это физическая система, насыщенная информацией. На уровне клетки информация может быть представлена по меньшей мере с помощью трех носителей.Во-первых, хромосомы. Это постоянный и практически неизменяемый информационный фонд организма. О роли информации, заключенной в хромосомах, мы еще поговорим далее. Пока что ясно, что информация, записанная в хромосомах, представляет собой полную программу построения данного индивидуального организма, позволяющую последовательно воспроизвести его во всех подробностях. Там же записаны программы подобного воспроизводства.Во-вторых, цитоплазма. Именно в цитоплазме сосредоточена жизнедеятельность клетки. Цитоплазма осуществляет обмен с внешней средой, содержит запасы сырья, из которого на основании генетических программ строятся белки, и готовую продукцию. Состояние клетки в основном определяется состоянием цитоплазмы. Цитоплазма содержит информацию о состоянии клетки и передает ее ядру и оболочке.В-третьих, оболочка. Эта информация используется в основном во взаимных обменах между клетками. В частности, именно оболочка нервных клеток ответственна за передачу сигналов по нервным цепям. Об этом также еще будет сказано.Физическая система, насыщенная информацией, должна характеризоваться весьма высоким качеством энергии. Так оно и есть на самом деле. Достаточно указать, что мышцы человека и животных представляют собой на сегодня самый совершенный двигатель, обладающий наиболее высоким коэффициентом полезного действия и самой малой удельной массой, приходящейся на единицу производимой механической работы. Современные конструкторы всевозможных двигателей внутреннего сгорания, электрических и т. п. могут лишь мечтать о тех показателях, которые природа уже давно достигла в своих творениях. В организме человека энергия перерабатывается также в самую совершенную продукцию во вселенной — мысль.Все это достигается благодаря чрезвычайной сложности структур клеток живого организма. К слову сказать, клетки мышц представляют собой длинные волокна с одной оболочкой, одной цитоплазмой и большим количеством ядер, расположенных вдоль волокна. На примере внутриклеточных процессов очень удобно проследить роль информации в биологических системах.Химия знает три вида реакций: экзотермические, эндотермические и идущие в присутствии катализатора. Экзотермические реакции идут с выделением энергии. Обычно вещества очень охотно вступают в экзотермические реакции, и они происходят либо сами по себе, либо в результате слабого начального толчка, как, например, взрыв смеси кислорода с водородом. Реакция идет с выделением тепла, и поэтому образовавшееся в результате реакции вещество характеризуется несколько более низким качеством внутренней энергии по сравнению с исходными реагентами.Эндотермические реакции совершаются с поглощением тепла. Они могут проходить только в специальных условиях при наличии запаса энергии и путей передачи этой энергии к реагентам. Получающееся в результате таких реакций вещество характеризуется несколько более высоким качеством внутренней энергии и просто большим запасом энергии по сравнению с исходными реагентами.Реакции, идущие в присутствии катализатора, могут быть как экзотермическими, так и эндотермическими. Присутствие катализатора создает в пространстве, окружающем реагирующие компоненты, условия для прохождения реакции. Здесь важно заметить следующее. Как в реакциях, проходящих без катализатора, так и в реакциях, проходящих с катализатором, информация, на основании которой строится вещество — продукт реакции, — записана в самих молекулах или атомах реагентов. Например, конструкция молекулы воды, состоящей из одного атома кислорода и двух атомов водорода, определяется внешними так называемыми валентными электронами атомов кислорода и водорода. Этой информации довольно много, потому что, кроме количества атомов в молекуле, определяется также угол между прямыми, проходящими через ядра атомов водорода и ядро атома кислорода. Этот угол всегда составляет точно 104 угловых градуса и 31 минуту.Исследование процессов, происходящих в клетке, показывает, что существует также четвертый тип реакций. Это реакции, требующие для своего осуществления присутствия информации, хранящейся на специальном носителе. Типичным является процесс синтеза белка в клетке. Он сводится к следующему.Информация, записанная в молекуле ДНК (дезоксирибонуклеиновой кислоты), как уже отмечалось, в присутствии катализатора — РНК-полимеразы — Переписывается на другой носитель — молекулу РНК. Эта молекула РНК и участвует в процессе синтеза белковой молекулы из исходных продуктов, хранящихся в цитоплазме. При этом информация, записанная в молекуле РНК, в буквальном смысле этого слова указывает, какая очередная молекула какой аминокислоты (относительно простых органических химических соединений, из которых состоит РНК) должна подсоединяться в каждый данный момент времени к уже построенной заготовке.Все это заставляет нас задать вопрос: является ли информация в биологических системах той же самой информацией, с которой мы уже познакомились на примерах термодинамических и атомных систем, или же это какая-то особая биологическая информация, подчиняющаяся своим закономерностям? Этот вопрос в последние годы интересует как биологов, так и физиков

ЧТО ТАКОЕ ЖИЗНЬ!

Под этим названием в феврале 1943 года один из основоположников современной физики, профессор Дублинского института перспективных исследований Э. Шредингер, прочитал курс лекций, посвященных некоторым проблемам биологии. Впоследствии эти лекции были изданы отдельной книгой. Э. Шредингер утверждал, что физика и химия в их современном состоянии не могут полностью объяснить те явления в пространстве и времени, которые происходят внутри живого организма. С другой стороны, неизбежное умирание всякого живого организма может служить еще одним, подтверждением справедливости второго начала термодинамики.Другой физик, Ю. Вигнер, считал, что для любого физика по меньшей мере кажется чудом способность молекулярных структур воспроизводить самих себя. То обстоятельство, что информация, необходимая для самовоспроизведения, заложена в структурах, имеющих молекулярные размеры и удерживаемых в порядке только химическими связями, делает это, в сущности, физически неправдоподобным. Ю. Вигнер указывал, что сложный генетический код, особенно вследствие своих малых размеров, по необходимости должен непрерывно расстраиваться, так что, каким бы хорошим ни было начало, поддерживать его в порядке неограниченно долго представлялось бы невозможным. Поскольку молекулярная информация должна непрерывно искажаться, то буквально чудом надо считать то, что организмы в действительности столь успешно сохраняют постоянство вида, воспроизводя себе подобных.Ю. Вигнеру ответил профессор Гарвардского университета Дж. Уолд. К счастью для всех нас, сказал Дж. Уолд, такого чуда не происходит. Генетическая информация непрерывно искажается. Это лежит в основе процесса возникновения мутаций. Из-за него организм в точности не воспроизводит себя. Всякий из нас знает об этом на основании собственного опыта в отношении явления репродукции. Всегда появляются какие-нибудь различия, хотя и необязательно только по этой причине.Это не означает несовершенства в организации живых организмов. Напротив, благодаря этому они стали тем, чем являются сейчас. Абсолютно верно, что непрерывное появление генетической изменчивости является основой естественного отбора и, следовательно, эволюции. Существенно, что искажения генетического кода случайны, они, безусловно, непредсказуемы, так как происходят в мире молекулярных размеров, и, кроме того, связаны с поведением одиночных молекул.

ЧЕЛОВЕК И ДРОЖЖИ

Мы встречаем здесь в некотором смысле парадокс, так как, несмотря на генетические изменения у индивидуальных организмов, эволюция обладает фантастической консервативностью. Случайным изменениям, встречаемым в онтогенезе, то есть в истории особи, сопутствует исключительная стабильность в филогенезе, в истории вида. Консервативность выходит далеко за пределы того, что мы могли раньше вообразить.Известно, что молекула белка представляет собой цепь, состоящую из отдельных фрагментов-аминокислот. В настоящее время экспериментально подтверждено существование 25 видов аминокислот. Молекула одного

белка отличается от молекулы другого как видами входящих в нее аминокислот, так и порядком, в котором они расположены. В клетке молекулы белков синтезируются на основе информации, поступающей от генов, которые, в свою очередь, состоят из фрагментов-нуклеотидов. Несколько нуклеотидов ответственны за выбор аминокислоты данного вида и размещение ее в данном месте цепи молекулы белка.Можно сравнить, например, аминокислотные последовательности в белках одного и того же типа у организмов разных видов. Оказывается, что а-цепь гемоглобина гориллы отличается от человеческой только одной аминокислотой из 146. Для синтеза последовательности из 146 аминокислот требуется специфическая последовательность из 3X146=438 нуклеотидов в соответствующем гене. Таким образом, между гориллой и человеком различие только в одном нуклеотиде из 438.Другая близкородственная группа белков — это цитохром С, один из ферментов клеточного дыхания. Он является одиночной цепью из 104 аминокислот, расположенных в строгой последовательности и, значит, синтезируется геном, имеющим 312 нуклеотидов. Между человеком и обезьяной макакой резус существует различие в одной аминокислоте из 104. Между человеком и лошадью — двенадцать различий, между человеком и цыпленком — четырнадцать, между человеком и тунцом — двадцать два, наконец, между человеком и дрожжевой клеткой — сорок три.Были времена говорит Дж. Уолд, сколько-то миллиардов лет тому назад, когда существовал общий предок дрожжей и человека. Некоторые его потомки пошли одним путем и постепенно стали дрожжами, некоторые другие следовали иной дорогой и постепенно стали человеком. Два пути ведут из того отдаленного прошлого, когда мы и дрожжи были одно, и за время этого двойного путешествия в гене, определяющем строение цитохрома С, произошли изменения всего в сорока трех нуклеотидах из 312.

БИОЛОГИЧЕСКИЙ БИЛЬЯРД

Вернемся к нашему вопросу о том, существует ли специальная биологическая информация? Чтобы с чего-то начать, зададим другой вопрос: чем отличается молекула белка от бильярдного стола?Самой главной характерной особенностью нашего бильярдного стола было то, что для каждого шара на нем не существовало никаких преимущественных положений. В молекуле белка, наоборот, каждый атом занимает относительно других атомов строго определенное, предназначенное именно для него положение. Можно ли говорить, что молекула белка представляет собой в этом смысле диаметральную противоположность бильярдному столу? Если шары идеально круглые и, как говорят, полностью изотропны, то есть обладают в точности одинаковыми свойствами в любом месте внутри шара и на его поверхности, то так оно и есть на самом деле.Однако стоит нам, например, намагнитить шары, и картина существенно меняется. Если, скажем, намагнитить шары так, чтобы каждый из них представлял собой двухполюсный магнит, то по прошествии относительно небольшого времени после первого удара они не только не разбегутся по всей поверхности стола, а, наоборот, создадут характерные фигуры, напоминающие движущиеся кольца.Мы говорили раньше, что случая, когда произвольно движущиеся шары снова соберутся в пирамидку, нужно ждать миллионы лет. Это справедливо опять-таки для идеально круглых однородных шаров. Если же шары намагнитить специальным, довольно сложным образом, то они начнут собираться в пирамидку значительно чаще. Правда, всякий раз, собравшись, опять будут расходиться, потому что общий запас кинетической энергии, по условию, остается неизменным.

Молекула белка и представляет собой такое образование из намагниченных, или, можно иначе сказать, помеченных шаров. Из одного этого сопоставления становится совершенно ясно, что информация, управляющая строительством и поведением живого организма, — это та же самая хорошо знакомая нам информация, с которой мы впервые познакомились, перенумеровав бильярдные шары.Девяносто девять процентов частей живых организмов состоят всего из четырех естественных элементов: углерода, водорода, кислорода и азота. Одно из особых свойств углерода, кислорода и азота заключается в том, что радиусы связей и, следовательно, внутриатомные расстояния в молекулах почти равны для всех трех элементов так же, как и углы между связями. В результате цепи, образованные этими атомами, имеют почти одинаковую геометрию независимо от того, состоят ли они целиком из углерода или последний любым .образом перемешан с атомами кислорода и азота. Две такие цепи могут геометрически соответствовать друг другу при любой последовательности составляющих их атомов и при любом вновь возникающем изменении в их составе.Продолжая аналогию с бильярдом, можно сказать, что белковые заготовки — аминокислоты — напоминают бильярдные шары, намагниченные простейшим образом, так что каждый шар представляет собой двухполюсный магнит. Такие заготовки (как и шары) могут соединяться между собой любым произвольным образом. Дожидаться того, чтобы аминокислоты сами собой- объединились, скажем, в молекулу ДНК, это, в известном смысле, то же самое, что и дожидаться, чтобы произвольно движущиеся по поверхности бильярдные шары сами собой собрались в пирамидку. А они тем не менее собираются! Как же это происходит?

ЕДИНСТВЕННОЕ ЧУДО

Один из наиболее универсальных законов современной квантовой физики гласит: всякое возможное событие, то есть событие, не запрещенное законами сохранения, рано или поздно, но обязательно наступает. Это справедливо и для аминокислот. Соединяясь в самые произвольные сочетания и затем снова разъединяясь, они в конце концов должны соединиться в молекулу ДНК. И вот тут проявляется некое замечательное свойство, которое при желании можно даже считать чудом.Мало того, что молекула ДНК сама по себе оказывается весьма устойчивой, она еще поставляет информацию (отдает соответствующие распоряжения) в окружающую среду и благодаря этому воспроизводит сама себя и другие белковые молекулы. Что же касается информации, то это та самая, уже хорошо знакомая нам информация, действующая в термодинамических, атомных и любых других физических системах. Просто, когда этой информации накапливается достаточно много, совершается диалектический переход и материя приобретает новое качество — качество живого.Ну а как же быть со вторым началом термодинамики и его многочисленными следствиями? Читатель, наверное, давно уже подметил, что авторы не склонны считать второе начало термодинамики столь же всеобъемлющим законом природы, как, например, закон сохранения энергии. Второе начало термодинамики, безусловно, действует в массовых вырожденных системах, то есть системах, состоящих из очень большого количества неотличимых друг от друга элементов и таких, что каждое отличимое состояние в них может быть реализовано очень большим количеством способов. Однако по мере снятия вырождения справедливость второго начала, вообще говоря, становится сомнительной.Лучшим примером может служить хотя бы та же молекула воды. Как совсем недавно отмечалось, атомы водорода в ней расположены под строго определенным углом. Если считать, что этот угол не может быть известен с точностью большей, чем одна минута, то в молекуле воды каждый раз реализуется один способ из 10800 возможных. Молекула воды — достаточно информированная система. Во-первых, ее энтропия значительно ниже максимально возможной, то есть энтропии такой системы, в которой атомы водорода могут располагаться совершенно произвольным образом. И во-вторых, при этом нет никаких оснований считать, что по истечении сколь угодно большого промежутка времени молекулы воды как-либо изменятся, станут более беспорядочными. Все то же самое справедливо в еще большей степени для сложных молекул органических веществ.— Но организмы все-таки стареют и умирают! — скажете вы.Это верно. Но у нас, во всяком случае, нет достаточных оснований считать, что это из-за второго начала термодинамики. Живые организмы действительно подвержены процессу старения, причем большинство ученых сходятся сегодня на том, что процесс старения имеет своей причиной частичное разрушение генетических кодов за счет неизбежных мутаций. Но то, что приносит смерть и разрушение одному индивидууму, служит целям еще большего повышения устойчивости биологического вида в целом. Можно пойти и дальше. Отдельные биологические виды приходят на смену друг другу, непрерывно совершенствуясь, и это служит целям повышения устойчивости (как говорил Дж. Уолд, консервативности) биосферы в целом.По словам того же Дж. Уолда, появление размера и формы, переход от неопределенности ко все увеличивающемуся определенному порядку в материальной организации — это одна из сущностей исторического развития вселенной. Морфология — это непрерывно утолщающаяся нить, проходящая через всю иерархию рангов организации материи. И дело не в том, что вселенная имеет тенденцию к порядку. Как раз наоборот, она проявляет сильнейшую тенденцию к беспорядку, выраженную вторым законом термодинамики. Однако в мощном потоке, устремленном в направлении возрастающей неупорядоченности, создаются условия сохранения некоторой малой доли порядка и даже известного увеличения этой доли. Здесь нет нарушения второго закона. Это маленькая область порядка образует едва различимый водоворот в общем ламинарном потоке к беспорядку, и за него (за этот водоворот) заплачено много раз и с избытком увеличением беспорядка в других областях вселенной.У нас есть все основания не согласиться с автором только что приведенного высказывания. Начнем с того, что второе начало термодинамики вообще справедливо лишь для замкнутых систем, ничем не обменивающихся с внешней средой. В то же время одним из самых характерных признаков живого организма являются процессы метаболизма, то есть процессы обмена с окружающей средой. Без метаболизма нет жизни. Поэтому физические системы, относящиеся к категориям живого, вообще не могут быть примерами ни в пользу, ни против справедливости второго начала.В процессе своей жизнедеятельности живые организмы потребляют энергию. Это и есть та цена, которой, по словам Дж. Уолда, заплачено за эволюцию. Более того, организмы потребляют энергию высокого качества и преобразуют ее в энергию самого низкого качества — тепло. Значит ли это, что жизнедеятельность организма сопровождается общим понижением качества энергии, то есть опять-таки повышением энтропии?Это может быть справедливо для отдельных участков вселенной, которые не изолированы, а значит, не обязаны подчиняться второму началу. Более того, у нас есть все основания полагать, что живые организмы в их высшей форме — организмы мыслящие — способны соответствующим образом организовывать потоки энергии в своей среде обитания, то есть повышать качество энергии (увеличивать информацию) и тем самым понижать энтропию системы.Последний возможный аргумент в этом рассуждении сводится к тому, что возрастает энтропия во всей вселенной и наличие биосфер в отдельных, локальных ее участках ускоряет этот процесс. Все, что можно ответить здесь, — это то, что лишь на самом примитивном уровне рассуждений можно присваивать вселенной в целом свойства, характерные для отдельных, локальных ее участков. Достаточно сказать, что если справедлива упомянутая нами раньше теория А. Фридмана и если за переживаемым нами сейчас периодом разбегания галактик последует период их сближения, то любые рассуждения о тепловой смерти вселенной теряют всякий смысл.Возвращаясь, однако, к нашей теме, мы можем сказать, что живое есть продукт совместного действия энергии и информации, причем в процессе творения живой материи одно не может заменить другое. Энергия не может заменить информацию, и наоборот. Следовательно, рассмотрение биологических систем еще раз подтверждает наш основной тезис о том, что информация есть независимая и универсальная физическая величина.

ЕСТЬ ЛИ ПОЛЕ?

Имеет смысл задержать внимание читателя еще на одном обстоятельстве. Мы говорили, что согласно теории А. Гурвича, кроме трех носителей информации в клетке — хромосом, цитоплазмы и оболочки, — существует еще четвертый носитель — поле, которое А. Гурвич поспешил окрестить биологическим. Тому положению, которое сейчас занимает биология среди прочих наук, она во многом обязана широко развившемуся в последние годы использованию математических методов, а также методов смежных наук — физики и физической химии. К сожалению, мы констатируем, однако, что специалисты-биологи еще не достигли столь полного слияния биологического мышления с математическим и физическим, какое можно наблюдать, например, у представителей различных инженерных специальностей.Одно из следствий этого состоит, в частности, в том, что самые простые физические явления, если только они происходят в биологических системах, сразу получают приставку «био». Мы только и слышим, что о биотоках, биопотенциалах, биополях и т. п. Дело, конечно, не в названии, но, с другой стороны, стоит назвать обычный электрический ток биотоком, как сразу же возникает мысль, что биоток (зачем-то ведь он получил приставку «био») по сравнению с обычным электрическим током обладает еще какими-то дополнительными, сугубо биологическими свойствами. А отсюда один шаг и до всякого рода шарлатанств вроде «видения» пальцами.Магистральный путь развития биологии как раз и направлен в сторону объяснения практически всех биологических явлений с позиций нормальных физики и химии. В частности, биотоки и биопотенциалы возникают в организме в результате обычных химических явлений в электролитах, разделенных клеточными оболочками — мембранами, таких же точно, как те, что происходят в некоторых видах электрических батарей и аккумуляторов. Приставка «био» здесь не вносит ничего нового.Попробуем с этих позиций рассмотреть вопрос о клеточных биополях. Во-первых, еще несколько фактов. По наблюдениям польского ученого Тарковского, если из двух клеток зародыша мыши оставить одну, то такой зародыш развивается нормально. До середины беременности он вдвое меньше обычного, затем внезапно наступает период резкого роста, и к моменту рождения он неотличим от любого другого новорожденного мышонка.Можно пойти дальше, то есть разрушить у четырехклеточного зародыша три из четырех клеток или взять восьмиклеточный зародыш и разрушить у него семь клеток и проследить далее судьбу одной клетки, оставшейся живой. Биологи Мур, Эдамс и Роусон получили нормальных плодовитых кроликов из одиночных клеток, оставшихся от двух, четырех или восьмиклеточных эмбрионов, пересаженных затем в матку крольчихи — приемной матери.Эти данные, казалось бы, свидетельствуют о том, что, во всяком случае, на стадии восьмиклеточного зародыша все клетки полностью равноправны независимо от занимаемого ими места. Но существуют и другие факты. У млекопитающих наиболее раннее проявление дифференцировки клеток явственно обнаруживается еще на стадии, когда зародыш представляет собой шар (бластоцисту). Уже на этой ранней стадии развития есть два типа клеток: более мелкие округлые клетки, расположенные внутри бластоцисты, из которых в дальнейшем образуется тело зародыша, и крупные уплощенные клетки, окружающие бластоцисту по поверхности, из которых развиваются плацента и оболочки зародыша.Тарковский и его сотрудники провели интересный опыт. Если только одной из клеток двухклеточного мышиного зародыша дать возможность развиваться, то она обычно образует типичную бластоцисту с нормальной дифференцировкой на внутренние и наружные клетки. Но если выделить одну клетку из четырехклеточного зародыша, то иногда внутренние клетки вообще не развиваются и вместо бластоцисты образуются полые шары, состоящие только из наружных клеток, которые не могут продолжать дальнейшее развитие. То же самое наблюдается (только еще чаще, в 80 процентах случаев), если культивировать одну клетку, изолированную из восьмиклеточного зародыша мыши. Эти факты свидетельствуют об обратном. Получается, что уже на четырехклеточной стадии клетки определенным образом дифференцированы. Правда, весьма существенное значение имеет здесь слово «иногда».Наиболее правдоподобным представляется следующее объяснение. Мы знаем, что хромосомы клеточного ядра содержат полную программу создания будущего организма во всех его деталях. Только что рассмотренные факты заставляют нас пойти дальше и предположить, что на хромосомах записаны отдельные подпрограммы, каждая из которых описывает развитие данной зародышевой клетки в одну из окончательных форм, то есть в нервную клетку, клетку кожи, клетку печени и т. д.Повторяем, каждая клетка зародыша, равно как и каждая уже специализированная клетка организма, содержит полный комплект таких подпрограмм.Та или иная подпрограмма включается в зависимости от внешних условий, а еще конкретнее — в зависимости от сигналов, поступающих в ядро от цитоплазмы и оболочки. Естественнее всего предположить, хотя стопроцентной уверенности в этом нет, что эти сигналы, как и прочие сигналы, включающие те или иные подпрограммы, имеют природу ферментов, то есть химическую. К слову сказать, включение различных подпрограмм в зависимости от внешних условий — это типичный прием, используемый программистами ЭВМ.Два процесса протекают одновременно. В зависимости от положения, занятого клеткой в бластоцисте, включается та или иная подпрограмма, а наличие той или иной работающей подпрограммы определяет места, занимаемые в дальнейшем потомством этой клетки.Значит ли это, что мы полностью отвергаем участит биополя в процессе дифференцировки клеток?Нет, не значит. Жизнедеятельность клетки состоит из множества чрезвычайно сложных физико-химических процессов. Нет ничего необычного в том, что при протекании некоторых из этих процессов, связанных с раз личной перегруппировкой атомов в молекулах, отдельные атомы возбуждаются и, приходя затем в основное состояние, излучают фотоны. Более того, поскольку молекулы белков и тем более РНК и ДНК имеют сложную и строго определенную геометрию, нет ничего необычного в том, что эти фотоны могут иметь определенные преимущественные направления движения. Наконец, нет ничего необычного в том, что фотоны воспринимаются другими клетками и инициируют там процесс образования того или иного фермента или же непосредственно воздействуют на хромосомы. Мы ведь знаем, что влияние света на направление процессов, происходящих в клетках, — факт, весьма распространенный в биологии (образование хлорофилла у растений).Однако сумма накопленных в биологии фактов свидетельствует скорее всего о том, что если и существует такая фотонная связь между клетками, то она не является единственным фактором, а действует наряду с другими, например, такими, как непосредственный контакт оболочек двух клеток. И уж конечно, нет никаких оснований называть фотоны биологическими, а образуемое ими поле — биополем только по той причине, что эти фотоны испускаются атомами, входящими в состав молекул живой клетки.Вообще все процессы, происходящие в живом организме, суть обычные физико-химические процессы, и они могут быть описаны и объяснены с позиций основных законов физики и химии. Только такая позиция позволяет биологии развиться в современную точную пауку. Что же касается некоторых, казалось бы, необъяснимых фактов (главным из них является сам факт существования живых организмов!), то как раз информационная теория систем позволяет снять с них последние покроим тайны. Наоборот, продолжая настаивать на существовании каких-то сугубо биологических явлений и закономерностей, мы лишь удлиняем путь, ведущий к но знанию биологических систем.

Поделиться с друзьями: