Чтение онлайн

ЖАНРЫ

Искусство схемотехники. Том 2 (Изд.4-е)
Шрифт:

Рис. 7.82. о — малошумящий предусилитель, рассчитанный на работу с Rи < 600 Ом (разработано Бобом Видларом для фирмы NSC);

Рис. 7.82. п — программируемый источник тока, использующий измерительный усилитель;

Рис. 7.82. р

ОУ, обеспечивающий высокую точность по постоянному току, высокое быстродействие или большую мощность;

Рис. 7.82. с — ОУ со сверхмалым шумом (фирма PMI, заметка по применению 102).

Дополнительные упраженения

(1). Докажите, что С/Ш = 10·lg(v2и/4kTRи) — КШ (дБ) (при Rи).

(2). Синусоидальный сигнал 100 Гц с эффективным напряжением 10 мкВ проходит через резистор 1 МОм при комнатной температуре. Какое будет отношение сигнал/шум в полученном в результате сигнале (а) в полосе шириной 10 Гц с центром на частоте 100 Гц? (б) В полосе частот от 0 до 1 МГц?

(3). Транзисторный усилитель, в котором применен 2N5087, работает при токе коллектора 100 мкА и возбуждается источником сигнала с полным сопротивлением 2000 Ом. (а) Найдите коэффициент шума при 100 Гц, 1 кГц и 10 кГц. (б) Найдите отношение сигнал/шум на каждой из названных частот для входного сигнала 50 нВ (среднеквадратичное) и полосы пропускания усилителя 10 Гц.

(4). Были произведены измерения на промышленном усилителе для определения его эквивалентного шума еш и iш при частоте 1 кГц (Zвх = 1 МОм). Выходной сигнал усилителя был пропущен через фильтр с крутым спадом частотной характеристики и полосой пропускания шириной 100 Гц, и входной сигнал 10 мкВ дал выходной сигнал 0,1 В. При таком уровне вклад шума усилителя пренебрежимо мал. Среднеквадратичное напряжение шумов на выходе равно 0,4 мВ при закороченном входе. При разомкнутом входе выходной шум возрастает до 50 мВ эфф. (а) Найдите еш и iш для этого усилителя на частоте 1 кГц. (б) Найдите коэффициент шума этого усилителя на частоте 1 кГц при сопротивлениях источника 100 Ом, 10 кОм и 100 кОм.

(5). На некотором усилителе производились измерения с помощью калиброванного источника шума с выходным полным сопротивлением 50 Ом. Выход генератора должен был быть увеличен до 2 нВ/Гц1/2 для того, чтобы удвоить мощность выходного шума усилителя. Каков коэффициент шума при сопротивлении источника 50 Ом?

(6). Напряжение выходного шума у генератора белого шума измеряется с помощью схемы, показанной на рис. 7.83. При некотором уровне выходного сигнала генератора вольтметр переменного тока показывает 1,5 В эфф. Какова будет плотность шума (среднеквадратичная, в вольтах на корень из герца) на выходе генератора?

Рис. 7.83.

Глава 8

ЦИФРОВЫЕ СХЕМЫ

Основные логические понятия

Перевод Ю.В. Чечёткина

8.01. Цифровые и аналоговые сигналы

Мы рассматривали до сих пор главным образом схемы, входные и выходные напряжения которых могли изменяться в определенном диапазоне значений: RC-цепи, интеграторы, выпрямители, усилители и т. п. Когда сигналы, с которыми приходится иметь дело, либо являются непрерывными по самой своей природе (например, звуковые), либо представляют собой непрерывно меняющиеся напряжения, поступающие от измерительных приборов (например, от устройств для измерения

температуры или обнаружения светового излучения, биологических или химических зондов), это естественно.

Входной сигнал по своей природе может быть и чисто дискретным, например импульсы в детекторе частиц или «биты» информации, поступающие от ключа, клавиатуры или ЭВМ. В подобных случаях естественно и удобно использовать цифровую электронику, т. е. схемы, которые имеют дело с информацией, представленной в виде «единиц» или «нулей». Для того чтобы непрерывную (аналоговую) информацию можно было обрабатывать на ЭВМ или хранить в виде чисел, ее необходимо преобразовать в цифровую форму и наоборот (с помощью цифро-аналоговых ЦАП и аналого-цифровых АЦП-преобразователей). Характерным примером служит ситуация, в которой микропроцессор или ЭВМ воспринимает сигналы от экспериментальной или промышленной установки, на основе полученных данных управляет параметрами эксперимента и хранит полученные результаты для последующего использования в процессе эксперимента.

Другим интересным примером, который демонстрирует возможности цифровых методов, является передача аналоговых сигналов без искажений, связанных с воздействием помех. Например, звуковые и видеосигналы, передаваемые по кабелю или с помощью радиоволн, воспринимают «шум», который потом нельзя отделить от полезного сигнала. Если же передаваемый сигнал преобразовать в ряд чисел, определяющих его амплитуду в последовательные моменты времени, а затем эти числа передавать в виде цифровых сигналов, то аналоговый сигнал, восстановленный на приемной стороне (с помощью ЦАП), не будет содержать ошибок, если уровень шума в канале связи не настолько высок, чтобы помешать правильному распознаванию «единиц» и «нулей». Этот метод, известный под названием импульсно-кодовой модуляции (ИКМ), особенно эффективен в том случае, когда сигнал должен проходить через ряд ретрансляторов, например, при межконтинентальной телефонной связи, так как восстановление цифрового сигнала в каждом пункте ретрансляции гарантирует помехоустойчивую передачу. Космические зонды с помощью ИКМ передают на землю данные и изображения. Цифровая звукозапись в вашем доме размещается на 12-см оптических «компакт-дисках», которые хранят стереомузыкальные произведения в виде 16 разрядов каждые 23 мкс, порядка 6 млрд. бит информации на все.

Возможности цифровой аппаратуры настолько велики, что задачи, предназначенные, казалось бы, исключительно для аналоговых методов, гораздо лучше зачастую решаются цифровым путем. Например, в аналоговом измерителе температуры можно установить микропроцессор и память, в результате этого повысится точность измерений за счет компенсации нелинейности прибора. Подобные применения микропроцессоров стали обычным делом. Ввиду их широкой доступности. Однако вместо того, чтобы пытаться перечислить все случаи, где может применяться цифровая электроника, лучше перейдем к ее изучению, в процессе которого примеры будут возникать сами собой.

8.02. Логические состояния

Под цифровой электроникой мы имеем в виду схемы, для каждой точки которых можно определить, как правило, только два состояния, например транзистор может быть либо закрыт, либо насыщен. В качестве параметра обычно выбирают не ток, а напряжение, уровень которого может быть ВЫСОКИМ или НИЗКИМ. Эти два состояния могут представлять различные «биты» (binary digits — двоичные разряды) информации, например, следующим образом: один бит числа: ключ замкнут или разомкнут, присутствует или отсутствует сигнал, уровень аналогового сигнала выше или ниже заданного предела, некоторое событие произошло или не произошло, требуется или не требуется выполнять некоторые действия и т. п.

Высокий и низкий уровни. Состояния ВЫСОКОГО и НИЗКОГО уровней определяют некоторым заданным образом «истинные» и «ложные» значения в булевой алгебре. Если в какой-либо точке схемы истинное значение определяет ВЫСОКИЙ уровень, то говорят, что эта сигнальная линия использует «положительную логику» и наоборот. Пример «отрицательной логики» показан на рис. 8.1.

Рис. 8.1.

Когда состояние КЛЮЧ ЗАМКНУТ истинно, выход имеет НИЗКИЙ уровень. Выходной сигнал таким образом соответствует «отрицательной логике» (более правильным было бы название «нулевая логика», поскольку отрицательное напряжение в схеме отсутствует) и может быть обозначен, как показано на рисунке. (Черта над символом означает операцию НЕ, т. е. данная линия имеет ВЫСОКИЙ уровень, когда ключ не замкнут.) Запомните, что наличие или отсутствие черты отрицания над обозначением говорит о том, какой уровень (ВЫСОКИЙ или НИЗКИЙ) будет иметь данный провод, когда заданное условие (КЛЮЧ ЗАМКНУТ) истинно.

Поделиться с друзьями: