Искусство схемотехники. Том 3 (Изд.4-е)
Шрифт:
Рис. 13.29.
Хорошее осуществление этой идеи с помощью источника тока на транзисторе, управляемом напряжением, показано на рис. 13.30; характеристики этой схемы приведены на рис. 13.31.
Рис. 13.30. Широкополосный линейный детектор с источником тока.
[Proc. IEE, 122. 3, 249 (1975).]
Рис. 13.31. Характеристики
Работу ее можно истолковать и так: в отсутствии входного сигнала выход усилителя развязывается от выпрямительной цепи, имеющей очень высокое усиление по напряжению (из-за его нагрузки, потребляющей ток); таким образом, чтобы открыть диод, достаточно очень небольшого входного сигнала. Здесь, усиление по напряжению падает до величины KU = Rн/(RЭ + rэ) (в данном случае, KU ~= 3), предотвращая насыщение. Благодаря широкополосному усилителю и быстродействующему диоду, эта схема будет работать в области до 100 МГц и выше.
Диодная компенсация пост-детектированием. Фирма Hewlett-Packard (HP Journal, 10/80) поставляет схемы, показанные на рис. 13.32, в которых так умно используют согласованные диоды Шоттки, что на каждый диод поступает один и тот же сигнал. Поскольку операционные усилители работают на выпрямленных (низкочастотных) сигналах, ширина полосы ограничивается только диодной цепью. Проектировщики этой схемы заслуживают высокой похвалы (они, можно сказать, «трижды молодцы»).
Рис. 13.32. Диодный детектор с самокомпенсацией; указаны падения напряжения и потенциалы в контрольных точках.
Детекторы с амплитудным слежением. На рис. 13.33 продемонстрирована другая хорошая идея. Чтобы свести на нет неизвестный ток, устранение диодных нелинейностей и смещений осуществляют, используя локально генерируемый сигнал, выпрямленный в симметричной схеме. Обратная связь регулирует амплитуду локального низкочастотного сигнала, делая сбалансированными выпрямленные выходы. Частота сигнала, формирующего нуль, достаточно низка так, что его амплитуда может быть точно измерена с помощью прецизионного выпрямителя на ОУ. При хорошем исполнении эти схемы будут работать линейно с сигналами в несколько милливольт и при частоте вплоть до гигагерц.
Рис. 13.33. Детектор с амплитудным слежением.
Детектирование мощности. Все вышеописанные методы касаются измерений амплитуды высокочастотного сигнала. Но часто бывает, когда нужно реально знать величину мощности. Конечно, для синусоидальной волны имеется простое соотношение, связывающее две величины, Р = U2сp.кв/Rн, т. е. по измеренной амплитуде вы можете рассчитать мощность. Однако, для волны несинусоидальной формы правильное измерение мощности может быть сделано только усреднением квадрата фактической формы сигнала напряжения. В языке радиочастотных измерений это означает, что вам необходим «квадратичный детектор».
Существуют некоторые пригодные для этого цифровые методы. Для сигналов с частотой ниже средних хорошо использовать «функциональные модули», например, монолитный преобразователь среднеквадратичного напряжения в постоянное AD637 Analog Devices. В этих устройствах экспоненциальная характеристика диода в цепи обратной связи используется для формирования квадрата входного сигнала, который затем проходит через низкочастотный фильтр и поступает на аналоговую схему, извлекающую квадратный корень. Схема характеризуется прекрасной
линейностью, динамической областью и хорошей шириной полосы. Например, AD637 имеет полную ширину полосы 8 МГц, нелинейность 0,02 % и динамическую область 60 дБ; у него даже есть логарифмический (дБ) выход.При частотах выше нескольких мегагерц методы «квадрат/квадратный корень» преобразования среднеквадратичного сигнала не работают из-за неадекватности полосы в цепи операционного усилителя. Однако можно использовать другие методы. На рис. 13.34 представлена простая схема квадратичного детектора с обращенным диодом, который есть не что иное, как туннельный диод (разд. 1.06), используемый в нетуннельном направлении (где он имеет нулевое прямое падение напряжения).
Рис. 13.34. Квадратичный детектор на обращенном диоде.
(С разр. Alan Rogers, Haystack Observatory.)
Мы получили эту схему от радиоастрономов Haystack Observatory и были поражены ее экстраординарной линейностью по мощности (рис. 13.35).
Рис. 13.35. Характеристика квадратичного детектора.
В значительной мере эта квадратичная техника произошла от болометрических методов, где входной сигнал (предварительно усиленный) подается на мощный омический нагреватель, температура которого затем измеряется. Поскольку мощность нагревателя точно пропорциональна U2, этот метод является чисто квадратичным. Примером болометрического модуля может служить LT1088 Linear Technology. В нем согласованная пара омических нагревателей связана с согласованной парой диодов, измеряющих температуру. Входной сигнал подается на один из нагревателей, а обратная связь подключается к опорному нагревателю, диод которого находится при той же температуре. Управляющее напряжение опорного нагревателя является выходным напряжением (рис. 13.36).
Рис. 13.36. Точный среднеквадратичный детектор LT1088. Uвых – пропорциональное точному среднеквадратичному входному напряжению.
Болометрической технике присущи широкополосность и точная квадратичность. Однако динамическая область у болометров ограничена, так как микроскопические количества тепла трудно измерить, а большие нагревы приводят к перегоранию устройства! Например, типовой LT1088 работает от постоянного тока до 300 МГц, но имеет динамическую область всего 25 дБ. Тщательное проектирование болометра дает возможность расширить полосу до СВЧ и увеличить динамическую область. Серии 432–438 болометрических измерителей мощности Hewlett-Packard с использованием набора взаимозаменяемых болометрических датчиков перекрывают область частот от 100 кГц до 50 ГГц. Динамическая область составляет 114 дБ (фактор мощности 2,5·1011), от +44 дБ (25 Вт) до -70 дБ (100 пВт), хотя любой отдельный болометр в большинстве случаев имеет область 50 дБ.
Радиосвязь: AM
Поскольку ВЧ-диапазон наибольшее применение находит в технике связи, важно разобраться в процессах модуляции и демодуляции сигналов, т. е. как используются радиочастоты при переносе информации от одного места в пространстве к другому. Кроме того, как вы будете себя чувствовать, если не сможете ответить на вопрос, как работает радио, и это после изучения курса электроники?
13.14. Некоторые принципы связи