Чтение онлайн

ЖАНРЫ

Искусство схемотехники. Том 3 (Изд.4-е)
Шрифт:

Существует несколько приемов проведения такого выключения питания (рис. 14.19):

1. Если отключаемые элементы потребляют ток меньше чем 5 мА или около того, вы можете питать их непосредственно с выходов логических КМОП-схем. Серии НС/НСТ могут обеспечивать ток питания 5 мА, при этом падение напряжения составит только 0,5 В относительно положительного напряжения питания; для формирования более высоких токов можно включать несколько выходов параллельно. AC/ACT серии КМОП хороши при токах до 24 мА.

2. Используйте мощный транзистор, функционирующий как ключ с насыщением (а не повторитель), с целью минимизации прямого падения напряжения (следовательно, транзистор р-n-р– типа, в случае

использования источника питания с положительным напряжением). Необходимое возбуждение на базе, выбираемое умеренно большим для обеспечения гарантированного насыщения, хотя и является недостатком, однако же будет, вероятно, меньшим злом, чем сам ток, потребляемый коммутируемой схемой.

3. Используйте мощный полевой МОП-транзистор. Как и в случае биполярных транзисторов, он используется в качестве ключа, а не повторителя (таким образом, при положительном напряжении питания это транзистор с p– каналом). Полевыми МОП-транзисторами легко управлять и в любом состоянии у них отсутствует ток затвора.

4. Большинство маломощных стабилизаторов имеют вход «выключения»; этот опорный режим характеризуется очень низким током покоя (см. разд. 14.07). Вы можете провести включение источника питания, переведя такой стабилизатор в активное состояние.

5. Используйте механическое реле, возможно, реле с механической фиксацией воздействия. Сейчас имеется много их разновидностей, как в DIP-корпусах, так и в крошечных металлических корпусах, и все они обеспечивают нулевое падение напряжения, высокую нагрузочную способность и возможность коммутировать двухполярные (или даже переменные) напряжения. Кроме того, для реле с механической фиксацией воздействия не требуется тока удержания. Для повышения надежности схемы используйте диод защиты управляющей цепи реле от индуктивных выбросов (рис. 1.95).

Рис. 14.19. Методы выключения источника питания.

Ограничение тока. Вследствие двух причин всегда важно ограничить пусковой ток в схеме с выключаемым источником питания: высокие пиковые токи, которые могут возникать в нагрузке (зашунтированной конденсатором) при переключении батареи (зашунтированной аналогичным образом), могут вывести из строя сам ключ; это верно даже и для небольших механических реле, контакты которого, вероятно, в большинстве случаев окажутся сваренными. Кроме того, мгновенное падение напряжения батареи в течение переходного процесса из-за переключения большого тока может привести к тому, что в энергозависимой памяти и других схемах, которые находятся в режиме резервирования, произойдет потеря информации (рис. 14.20).

Рис. 14.20. Пусковой ток может вызвать пропадание напряжения батареи в течение переходного процесса.

Некоторые подходы к решению этой проблемы показаны на рис. 14.21.

Рис. 14.21. Четыре способа борьбы с переходным процессом пускового тока.

На то время, пока сам ключ подвержен влиянию переходного процесса, включается выполненная на диоде развязка отрицательного провала в напряжении питания от стабилизаторов поддержки, как это сделано в варианте 1. С другой стороны, можно провести выключение перед стабилизатором с ограничением

тока (сохраняя малое значение его входного шунтирующего конденсатора), как в варианте 2, или установить сам ключ после стабилизатора (вариант 3). Последний способ не совсем хорош вследствие ухудшения электрической жесткости источника питания, вызванного сопротивлением ключа Rвкл.

Другой способ заключается в использовании предварительного ограничения тока, т. е. до выключения (вариант 4), в этом случае при ограничении тока на уровне 150 мА предотвращается резкий спад напряжения Uбат.

14.07. Микромощные стабилизаторы

Вплоть до последнего времени было трудно найти интегральный стабилизатор напряжения, который бы при токах покоя микроамперного диапазона обеспечивал существенные выходные токи. Была альтернатива: либо а) стабилизатор 7663/4 фирмы Intersil, либо б) строить свой собственный! К счастью, ситуация улучшается. Далее приводится обзор текущего состояния дел: ICL7663/4; МАХ663/4/6 (фирма Intersil; вторичные изготовители фирма Maxim и другие). Это — многополюсные стабилизаторы на положительное и отрицательное напряжения с рабочим диапазоном напряжений 1,5-16 В и максимальным током покоя 10 мкА. Неприятная их особенность — это то, что они медленно действующие (вследствие «заморенного» сервоусилителя и использования множества шунтирующих емкостей) и хороши только при токах в нагрузке порядка нескольких миллиампер (будучи КМОП-приборами, они плохо действуют при более высоком входном напряжении); например, при входном напряжении +9 В их выходное полное сопротивление составляет, как правило, 70 Ом.

LP2950/1 (фирма National). Это — стабилизаторы положительного напряжения, которые выпускаются в 3-контактном корпусе на напряжение +5 В (2950) и в 8-контактном корпусе с регулируемым напряжением (2951). Ток покоя составляет 80 мкА (при отсутствии тока в нагрузке) и возрастает до 80 мА — при токе нагрузки 100 мА. В этих стабилизаторах используются проходные p-n-p– транзисторы, которые обеспечивают низкий перепад напряжения (80 мВ макс, при токе 100 мкА; 450 мВ макс, при токе 100 мА) и спроектированы таким образом, что ток покоя не повышается стремительно, когда входное напряжение опускается ниже этого перепада напряжения (общая болезнь стабилизаторов на крутизне биполярного транзистора). Эта последняя их особенность, в частности, полезна для питаемых от батареи приборов, которые могут продолжать функционировать и при низком напряжении батареи. В стабилизаторе 2951 имеется вход выключения и выход детектора перепада напряжения.

LT1020 (фирма Linear Technology). Это — многополюсной стабилизатор положительного напряжения с током покоя 40 мкА, диапазоном выходного напряжения 2,5-35 В и максимальным током 125 мА. Проходной транзистор p-n-p– типа дает низкий перепад напряжения (20 мВ тип. при 100 мкА; 500 мВ тип. при 125 мА). Имеется вход выключения и выход детектора перепада напряжения.

TL58 °C (фирма Texas Instruments). Это — сдвоенный микромощный импульсный стабилизатор с диапазоном выходного напряжения 2,5-24 В и током покоя 140 мкА. Как и все импульсные стабилизаторы, он обладает высоким КПД (вплоть до 80 %) во всем диапазоне напряжений батарей и гибкостью, а именно возможностью формирования выходных напряжений, превышающих само нестабилизированное входное напряжение.

Серия МАХ630 (фирма Maxim). Это — микромощные импульсные стабилизаторы с прекрасными возможностями по выбору параметров. Стабилизатор МАХ630 представляет собой регулируемый (от 2 до 18 В) повышающий стабилизатор положительного напряжения (т. е. UвыхUвх), в то время как ИС МАХ634 является инвертирующим импульсным стабилизатором (т. е. положительное входное напряжение и отрицательное выходное напряжение). Стабилизаторы М АХ631-3 — это повышающие импульсные стабилизаторы на фиксированное положительное напряжение (5, 12 и 15 В), при этом стабилизаторы МАХ635-7 его инвертирующие эквиваленты. Стабилизатор МАХ638 представляет собой регулируемый понижающий импульсный стабилизатор на положительное напряжение (Uвых < Uвх). Все они способны обеспечивать выходные токи в несколько сотен миллиампер, токи покоя приблизительно 100 мкА и КПД приблизительно 80 %.

Поделиться с друзьями: