Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
Шрифт:
Теоретически все случайные ошибки предполагаются независимыми и имеющими одну и ту же дисперсию 2, однако в действительности конкретные остатки отнюдь не независимы и, следовательно, не имеют одинаковых дисперсий. В действительности дисперсия остатков зависит не только от величины 2, но и от hi — i-го диагонального элемента матрицы вида Хt(Х`Х)– 1Хt, с которой мы уже познакомились в главе 3.
Стьюдентизированные остатки в EVews рассчитываются по формуле
где еt —
s(i) — стандартное отклонение остатков, полученное по уравнению регрессии, построенному по тому же временному ряду без учета наблюдения i;
ht — i– ный диагональный элемент матрицы вида Хt(ХХ)– 1Хt.
При необходимости i– ный диагональный элемент матрицы Хt(ХХ)– 1Хt можно найти для каждого наблюдения, если в диалоговом мини-окне INFLUENCE STATISTICS установить опцию ПАТ MATRIX (т. е. матрица Хt(ХХ)– 1Хt).
Например, величина стьюдентизированного остатка для сентября 1998 г. равна
Распределение стьюдентизированных остатков подчиняется t– статистике, получаемой в результате подстановки фиктивной переменной в первоначальное уравнение регрессии. Причем фиктивная переменная для интересующего нас наблюдения i равна 1, а для всех остальных наблюдений она равна 0. Таким образом, стьюдентизированный остаток можно интерпретировать как тест на значимость остатка определенного наблюдения с точки зрения его влияния на уравнение регрессии.
Следует заметить, что если у кого-то из читателей нет последней версии EViews или иных программ, умеющих рассчитывать стьюдентизированные остатки, то в принципе для обнаружения выбросов вполне возможно пользоваться стандартными остатками. Во всяком случае, как утверждают Н. Дрейпер и Г Смит, в подавляющем большинстве случаев, хотя и не во всех, для обнаружения выбросов вполне достаточно пользоваться графиками обычных и стандартных остатков [15] .
Чтобы убедиться в справедливости этих слов, мы провели небольшой эксперимент. С этой целью уравнение регрессии USDOLLAR = а x USDOLLAR(-l) + b x USDOLLAR(-2) решено на основе данных за период с июня 1992 г. по апрель 2010 г., а затем рассмотрены полученные остатки (табл. 5.9). В том случае, когда стьюдентизированные остатки диагностируют выбросы, стандартные остатки также их выявляют (если к выбросам отнести остатки, имеющие два стандартных отклонения). Правда, поскольку стьюдентизированные остатки учитывают не только стандартное отклонение, но и дисперсию между различными наблюдениями (формула (5.6)), то величина стьюдентизированных остатков всегда выше. Причем особенно заметна эта разница относительно сентября 1998 г. и января 2009 г., т. е. когда на валютном рынке наблюдалась максимальная волатильность, обусловленная в первом случае августовским дефолтом 1998 г., а во втором случае — глобальным финансовым кризисом 2008–2009 гг.
15
Дрейпер Н., Смит Г. Прикладной регрессионный анализ. С. 190.
5.5. Тесты Чоу на наличие структурной стабильности во временно м ряде
Диагностика выбросов в остатках является не единственным инструментом для выявления проблем, мешающих повышению точности прогностических моделей. В этом смысле, пожалуй, еще большее значение имеет тест Грегори Чоу на наличие структурной стабильности временного ряда. Поэтому следующим нашим шагом будет оценка на основе этого теста стабильности временного ряда за период с июня 1992 г. по апрель 2010 г. С методикой проведения этого теста можно познакомиться в алгоритме действий № 18.
Тест Чоу на диагностирование структурной
стабильности проводится следующим образом. Сначала берется временной ряд (например, данные по ежемесячному курсу доллара за период с июня 1992 г. по апрель 2010 г.), относительно которого выдвигается нулевая гипотеза о его структурной стабильности. Потом этот временной ряд делится на два периода наблюдений, граница между которыми проводится в момент времени t, т. е. в момент предполагаемых структурных изменений. (При необходимости EViews позволяет проводить тест на наличие во временном ряде структурных изменений не только в какой-то один момент времени t, но и сразу для нескольких моментов, деля выборку на несколько соответствующих периодов.)Проверка нулевой гипотезы идет путем сравнения разницы между суммой квадратов остатков, которую мы получаем, построив уравнение регрессии для единого временного ряда, и суммой квадратов остатков, получаемой при построении уравнения регрессии отдельно для каждого периода этого ряда. При этом в соответствии с методикой, предложенной Г. Чоу, определяется фактическое значение F– критерия и LR– статистики (log likelihood ratio statistic — соотношение статистики логарифмов правдоподобия). Если уровни значимости F– критерия и LR– статистики оказываются меньше 0,05, то тогда нулевая гипотеза о структурной стабильности временнoго ряда отвергается, а следовательно, влияние структурных изменений признается существенным.
В соответствии с данными табл. 5.4 вполне логично предположить, что самые значительные структурные изменения в исследуемом временном ряде могли произойти после самого крупного скачка курса доллара, имевшего место в сентябре 1998 г. Поэтому мы решили выделить в нашем временном ряде период с октября 1998 г. по апрель 2010 г. При этом для корректного проведения теста необходимо, чтобы количество наблюдений в каждом из выделенных периодов временнoго ряда было по меньшей мере равно количеству параметров в оцененной нами статистической модели. Впрочем, это требование соблюдено, поскольку в анализируемой статистической модели всего лишь два параметра, а в самом малом выделенном периоде временного ряда имеется 74 наблюдения.
Чтобы в EViews провести тест Чоу на наличие структурной стабильности, в меню оцененного уравнения регрессии необходимо воспользоваться опциями VIEW/STABILITY TESTS/CHOW BREAKPOINT TEST… (смотреть/тесты на стабильность/тест Чоу на структурные изменения). В результате открывается диалоговое мини-окно CHOW TESTS (тесты Чоу), в котором нужно указать конкретное наблюдение, когда произошло предполагаемое структурное изменение во временном ряде. В этом случае в мини-окно введено обозначение — 98m10, т. е. указан октябрь 1998 г. (рис. 5.8). Следовательно, можно посмотреть, произошли ли структурные изменения в октябре 1998 г.
После того как мы щелкнули кнопку ОК, в мини-окне CHOWTESTS появился вывод данных по результатам тестирования, которые приведены в табл. 5.10. Поскольку уровни значимости (Probability) как F– критерия (F-statistic), так и LR– статистики (Log likelihood ratio — соотношения логарифмов правдоподобия) у нас оказались равны нулю, т. е. получились меньше критического значения, равного 0,05, следовательно, нулевая гипотеза о наличии структурной стабильности во временном ряде в октябре 1998 г. отвергается.
После того как была выдвинута нулевая гипотеза о структурной стабильности временного ряда, далее нам приходится решать несколько уравнений регрессии USDOLL AR = a x USDOLL AR(-1) + b x USDOLL AR(-2) как относительно единого временного ряда, так и относительно каждого выделенного периода наблюдений. Напомним, что в этом случае мы предположили, что структурная нестабильность возникла в октябре 1998 г., а потому временной ряд нами разделен на два периода: с июня 1992 г. по сентябрь 1998 г. и с октября 1998 г. по апрель 2010 г. Таким образом, мы находим сумму квадратов остатков, полученных как по единому уравнению регрессии для всего временнoго ряда, так и по остальным уравнениям регрессии (назовем их совокупность объединенной кусочно-линейной прогностической моделью) для каждого выделенного периода наблюдений.