Чтение онлайн

ЖАНРЫ

КВ-приемник мирового уровня? Это очень просто!
Шрифт:

«А»: У любителей они известны, как «семечки»!

«С»: Да, но вообще стоит заметить, что эти самые «семечки» — отличные универсальные транзисторы…

«А»:…Которые с успехом применяются в высокочастотных схемах!

«С»: Когда для этой цели под рукой нет ничего более подходящего! Кстати, согласно справочнику, для всех индексов транзистора КТ315 емкость С3 (коллектор — база) составляет 7 пФ, а для КТ315Ж — 10 пФ! А вот для специализированного ВЧ транзистора КТ339А — не более 2пФ! А это — существенная разница! У германиевого транзистора ГТ329 емкость меньше, чем 2 пФ.

А вот у ГТ341 — не более 1 пФ! У прекрасного специализированного транзистора

КТ399А (он действительно имеет параметры международного класса) емкость коллектор — база меньше, чем 1,4 пФ!

«А»: Выходит, что хотя КТ315 и КТ339А имеют примерно равные fT, я никогда не получу при использовании КТ315 такое усиление на высоких частотах, как для КТ339А?

«С»: В одной и той же схеме подключения — никогда! И примирись с этим заранее! Поэтому в радиоприемных устройствах высокого класса (а мы собираемся строить именно такое) следует в радиочастотных цепях применять ТОЛЬКО специализированные малошумящие транзисторы!

«Н»: А чем характеризуются шумовые параметры транзистора?

«С»: Обычно сам транзистор считается бесшумным. Тогда КОЭФФИЦИЕНТ ШУМА F показывает, на какое число необходимо умножить мощность шума в резисторе Rвн (где Rвн — эквивалентная величина внутреннего сопротивления источника напряжения сигнала), чтобы на выходе бесшумного транзистора получить такую же мощность шума, что и в реальной цепи. Коэффициент шума характеризуется логарифмической величиной F(дБ) = 10 lgF. Эта величина зависит от целого ряда параметров.

От режима эксплуатации, диапазона частот, температуры. Для каждого типа специализированных малошумящих транзисторов определен перечень режимов и условий, при которых шум минимален…

«А»: Что мы обязательно учтем при постройке приемника!

«С»: Вне всяких сомнений!

«Н»: Что нам ещё осталось сделать для ознакомления с биполярными транзисторами?

«С»: Больше ничего! Теперь пора перейти к рассмотрению ПОЛЕВЫХ ТРАНЗИСТОРОВ.

Глава 14. Полевые (униполярные) транзисторы

«Спец»: Полевыми транзисторами называются кристаллические полупроводниковые структуры, которые, в отличие от биполярных транзисторов, управляются электрическим полем. То есть, практически, без затраты мощности управляющего сигнала.

Вообще к настоящему времени известно около двух десятков различных видов полевых приборов. Основная масса их выполняется на основе кремния или арсенида галлия. Германиевые полевые приборы не применяются в силу ряда причин. Но для наших практических целей достаточно иметь представление о СЕМИ разновидностях полевых транзисторов (рис. 14.1).

«Аматор»: А не многовато будет?

«С»: Да нет, в самый раз! Прежде всего, приведем схемные обозначения этих семи основных видов (см. рис. 14.1).

«Н»: А как работают эти транзисторы и почему необходимо столько различных типов?

«С»: Управляющий электрод всех типов полевых транзисторов (FET) называется ЗАТВОРОМ, обозначаемым как 3 или имеющим международное обозначение G. Он позволяет управлять величиной сопротивления между СТОКОМ С (или D) и ИСТОКОМ И (или S).

Управляющим напряжением является, таким образом, Ugs (или Uзи). Большинство полевых транзисторов являются симметричными, то есть их свойства не изменяются, если D и S поменять местами. В транзисторах с управляющими р-n– переходами затвор отделен от канала обратно смещенным р-n– переходом.

«А»: То есть первое различие от биполярных трап л к торов в том, что у БТ управляющий р-n– переход ВСЕГДА включен в прямом направлении, а у ПТ (JFET) — всегда в обратном?

«С»: Это действительно так. Но вот у полевых транзисторов с изолированным затвором, или МОП-транзисторов (MOSFET) затвор отделен от канала тонким слоем диэлектрика SiО2. У этих транзисторов ток через затвор невозможен при любой полярности управляющего напряжения.

«Н»: Но ведь любой реальный прибор всё равно характеризуется какими-то реальными токами?

«С»: Как водится! Так же это относится и к JFET, и к MOSFET. Например, реальные токи затворов JFET находятся в пределах от единиц наноампер до единиц пикоампер. У МОП-транзисторов (MOSFET) они меньше ещё натри порядка! Таким образом, полевые транзисторы характеризуются колоссальными величинами входных сопротивлений. Оно у них выше, чем у ПУЛов (приемно-усилительных ламп).

«А»: А какова физика работы, например JFET (полевого транзистора с управляющим р-n– переходом)?

«С»: JFET имеет управляющий канал проводимости в объеме полупроводника. Рассмотрим действие прибора, упрощенная конструкция которого показана на приведенном рис. 14.2. Данный прибор изготовлен из кремния, имеющего собственную проводимость n-типа (то есть донорную, с избытком электронов). На верхней и нижней плоскостях сформированы р-n– переходы, путем формировании в кремнии n– типа, областей p– типа (то есть акцепторных, с повышенной концентрацией дырок).

Если к затвору относительно истока прикладывается отрицательное напряжение (см. рис. 14.2), то вблизи р+ областей образуются зоны, обедненные электронами (зона Б). Толщина зоны зависит от величины абсолютного значения напряжения Uзи. При приближении этого напряжения к нулю толщина обедненного слоя уменьшается. Та часть структуры, которую не достигли обедненные слои (зоны) называется КАНАЛОМ, из-за чего полевые транзисторы называются также — КАНАЛЬНЫМИ.

«А»: Кстати, проводимость канала определяется ОСНОВНЫМИ НОСИТЕЛЯМИ, то есть в данном случае мы можем говорить, что имеем дело с n– канальным прибором, проводимость которого определяется электронами.

«С»: Совершенно верно! Но имеются в виду и р– канальные приборы, проводимость которых имеет сугубо дырочный характер!

«Н»: А что в этом случае изменяется?

«А»: Прежде всего полярность подключения питания изменяется на противоположную! Естественно, меняется и производственная технология!

Поделиться с друзьями: