Лестница жизни. Десять величайших изобретений эволюции
Шрифт:
Был заказан новый, намного более совершенный фотометр, спроектированный учеными из НАСА, знавшими все о регистрации излучений в черноте космического пространства. Этот прибор назывался ALISS (Ambient Light Imaging and Spectral System — «система визуализации и спектрометрии окружающего света»), и он действительно позволил зарегистрировать свет с другими длинами волн. С помощью ALISS в стране чудес «черных курильщиков» удалось выявить небольшой пик в зеленой части спектра, где интенсивность света была на несколько порядков выше, чем предсказывала теория. Результаты новых измерений вскоре подтвердились и на других полях «черных курильщиков». Хотя источник этого мистического света по-прежнему остается загадкой, нет недостатка в остроумных гипотезах. Одна из них предполагает, что видимый свет могут испускать выходящие из гидротермальных источников пузырьки газа, сжимаемые высоким давлением воды, подобно тому, как это может происходить при образовании и разрушении кристаллов под высоким давлением при высокой температуре.
Синди Ван Довер не зря верила в родопсин: она знала, что что-то тут не так. У родопсинов есть удивительная способность соответствовать условиям окружающей среды. Море не зря называют синим: этот свет проходит сквозь воду дальше, чем свет с другими длинами волн. Море быстро поглощает красный свет, и он не может
Наше цветовое зрение тоже зависит от способности родопсинов поглощать свет с разными длинами волн. В нашей сетчатке имеются светочувствительные клетки двух типов: палочки и колбочки. Строго говоря, только палочки содержат родопсин, а колбочки содержат один из трех собственных, колбочковых опсинов. Но эта классификация ничего нам не дает, поэтому что все эти зрительные пигменты обладают примерно одинаковой принципиальной структурой: все они состоят из того или иного белка (опсина), встроенного в клеточную мембрану, где он образует семикратный зигзаг, и связанного с ним производного витамина А — так называемого ретиналя. Ретиналь — пигмент, отвечающий за поглощение света. Поглотив фотон, молекула ретиналя меняет свою форму с изогнутой на прямую, и этого оказывается достаточно, чтобы запустить работу всего биохимического каскада, в итоге посылающего в мозг сигнал «свет».
Хотя свет поглощает именно ретиналь, важнейшим фактором спектральной настройки оказывается как раз структура белка опсина. Небольшие изменения в ней могут менять цвет поглощаемого ретиналем света с ультрафиолетового (около 350 нанометров), как бывает у насекомых и птиц, до красного около 625 нанометров), как у хамелеонов. В итоге, используя несколько разных опсинов, поглощающих свет с разными длинами волн, можно получить цветовое зрение. Наши собственные колбочковые опсины поглощают преимущественно свет синей (433 нанометра), зеленой (535 нанометров) и красной (564 нанометра) частей спектра, вместе обеспечивая привычный диапазон видимого света [63] .
63
Внимательный (или осведомленный) читатель мог заметить, что опсин «красных» колбочек сильнее всего поглощает свет с длиной волны 564 нанометра, то есть вовсе не красный, а расположенный в желто-зеленой части спектра. Дело в том, что при всей яркости красного цвета он представляет собой лишь плод нашего воображения: мы видим красный цвет, когда мозг сопоставляет информацию, поступающую одновременно от двух типов колбочек: отсутствие сигнала от «зеленых» и слабый сигнал от «красных», то есть «желто-зеленых». Это наглядный пример силы воображения. В следующий раз, когда вы будете спорить с кем-нибудь, подходят ли друг к другу два разных оттенка красного, напомните собеседнице, что «правильного» ответа просто не существует, а значит, она в любом случае не права.
Хотя общая структура опсинов похожа, по различиям между ними можно восстановить интереснейшую историю эволюции их обладателей. Все они возникли за счет удвоения и последующего эволюционного расхождения генов, и у истоков их всех стоял один и тот же ген опсина. Ясно, что одни удвоения происходили раньше, другие — позже. Например, наши «красный» и «зеленый» опсины состоят в довольно близком родстве: породивший их ген удвоился лишь у общего предка приматов. Это удвоение дало приматам три типа колбочковых опсинов (по крайней мере, впоследствии, когда полученные два гена немного разошлись) вместо двух, благодаря чему и большинство людей обладают трехцветным (трихроматическим) зрением. У тех немногих, которые, к несчастью, родились дальтониками, не способными различать красный и зеленый цвета, один из этих генов вновь утрачен, что делает их зрение дихроматическим, как почти у всех остальных млекопитающих. Слабость цветового зрения большинства млекопитающих, возможно, связана с ночным образом жизни их сравнительно недавних предков, который помогал им прятаться от господствовавших в те времена динозавров. Почему приматы вернули себе трехцветное зрение — вопрос спорный. Самая популярная теория предполагает, что оно помогало им замечать красные плоды на фоне зеленой листвы. Согласно другой теории, придающей большее значение социальным факторам, трехцветное зрение возникло у приматов потому, что помогало им различать эмоции, признаки угрозы и сигналы потенциальных половых партнеров — от краски стыда до неприкрытого вранья (интересно, что у всех приматов, обладающих трихроматическим зрением, лица не прикрыты шерстью).
Я сказал, что приматы «вернули себе» трехцветное зрение, но на самом деле в том, что касается зрения, мы по-прежнему остаемся бедными родственниками многих других позвоночных. У рептилий, птиц, амфибий и акул зрение четырехцветное, и вполне вероятно, что общий предок всех позвоночных тоже обладал тетрахроматическим зрением и способностью видеть ультрафиолетовый свет [64] . Эту возможность подтвердили результаты одного очаровательного эксперимента: сравнив ДНК-последовательности генов современных позвоночных, Ши Юншэн и Седзо Екояма из Сиракузского университета в штате Нью-Йорк реконструировали последовательность одного из генов, которым обладал общий предок всех позвоночных. По одной последовательности мы пока не можем судить, какой была длина волны света, поглощаемого соответствующим опсином. Но это не
остановило Ши и Екояму: они воспользовались методами генной инженерии, чтобы синтезировать кодируемый данным геном белок, а затем непосредственно измерили спектр поглощаемого света. Как и ожидалось, пик поглощения пришелся на ультрафиолетовую часть спектра (360 нанометров).64
Папарацци хорошо знают: чем крупнее линза, тем больше она позволяет увидеть. Это относится и к хрусталику. Очевидно, что верно и обратное, так что хрусталик не может быть меньше некоторого порогового размера — сравнимого с размером отдельных фасеток в глазах насекомых. Однако важную роль здесь играют не только размеры хрусталика, но и длина световых волн: чем меньше длина волны, тем лучше разрешение. Возможно, именно этим и объясняется, почему и современные насекомые, и древнейшие (мелкие) позвоночные воспринимали ультрафиолетовый свет: это увеличивает разрешающую способность маленьких глаз. У нас в этом нет необходимости, потому что хрусталики наших глаз крупные и мы можем себе позволить отбросить эту опасную для клеток часть спектра. Интересно, что способность насекомых воспринимать ультрафиолетовый свет дает им возможность видеть узоры и оттенки цветов, которые для нас выглядят просто белыми. Во многом именно поэтому на свете так много белых цветов: с точки зрения опылителей они весьма пестро окрашены.
Ствол генеалогического древа опсинов, как мы убедились, восходит к общим предкам позвоночных и беспозвоночных. Но даже у такого живого ископаемого, как близкий к протобилатериям многощетинковый червь Platynereis, имеются уже два разных опсина, соответствующих опсинам позвоночных и беспозвоночных. На что же был похож самый древний предок опсинов всех животных, и откуда он взялся? На этот счет существует несколько гипотез. Но нашими главными проводниками в прошлое до сих пор были сами гены, и с их помощью мы смогли преодолеть промежуток в 600 миллионов лет. Не укажут ли они нам дорогу в еще более далекое прошлое? Петер Хегеманн и его коллеги из Регенсбургского университета в Германии утверждают, что гены действительно позволяют ответить на интересующий нас вопрос, и ответ этот оказывается совершенно неожиданным. Если верить выводам исследователей, самый первый прототип глаза возник даже не у животных, а у водорослей!
Водоросли, как и растения, — мастера фотосинтеза, осуществлять который им помогают самые разные светочувствительные пигменты. У многих водорослей есть пигменты, содержащиеся в простом глазном пятне и используемые, чтобы отслеживать интенсивность света и при необходимости как-то на нее реагировать. Например, удивительно красивая микроскопическая водоросль вольвокс образует состоящие из сотен клеток полые сферы до миллиметра в диаметре. У каждой клетки имеются два жгутика, торчащие наружу, как весла. Они работают в темноте, но останавливаются на свету, благодаря чему вся сфера перемещается в сторону Солнца и может находить наилучшие условия для фотосинтеза. Команда остановить работу жгутиков поступает от глазных пятен. Самое же удивительное то, что работающий в глазных пятнах вольвокса пигмент оказался родопсином.
Еще большей неожиданностью оказалось то, что родопсин вольвокса производит впечатление предкового по отношению к опсинам всех животных. Место молекулы этого родопсина, где ретиналь связывается с белком, содержит участки, точно совпадающие с соответствующими участками опсинов позвоночных и беспозвоночных, и производит впечатление промежуточного между теми и другими. Общая структура гена этого родопсина, представляющего собой пеструю смесь кодирующих и некодирующих последовательностей (известных в науке как интроны и экзоны), также выдает его древнюю связь с опсинами как позвоночных, так и беспозвоночных. Это еще ничего не доказывает, но именно такими особенностями должен был обладать белок, от которого произошли оба семейства опсинов. А значит, вполне вероятно, что прародительницей глаз всех животных была, как ни странно, фотосинтезирующая водоросль.
Но здесь, разумеется, возникает вопрос, как родопсин водорослей мог достаться животным? Вольвокс никак не может быть предком животных. Но если взглянуть на устройство его глазного пятна, можно сразу увидеть возможный ключ к разгадке: родопсин у вольвокса встроен в мембрану хлоропласта — одной из крошечных структур, отвечающих в клетках водорослей и растений за фотосинтез. Предки хлоропластов, жившие миллиард лет назад, были свободноживущими фотосинтетическими бактериями — цианобактериями, которых впоследствии поглотила более крупная сложная клетка (см. главу 3). А это значит, что глазное пятно не должно быть уникальной особенностью клеток вольвокса и вполне может быть свойственно и другим хлоропластам, а может быть, и их предкам — цианобактериям [65] . А хлоропласты можно найти и во многих других клетках, в том числе у некоторых простейших, к которым действительно принадлежали предки животных.
65
Родопсины имеются у многих бактерий. Бактериальные родопсины похожи по структуре как на родопсины водорослей, так и на родопсины животных, и кодирующие их гены родственны генам родопсинов водорослей. Бактерии используют родопсины как в светочувствительных датчиках, так и для осуществления одной из форм фотосинтеза.
Простейшие — это группа одноклеточных организмов, среди которых особенно известны амебы. Голландец Антони ван Левенгук, один из первых исследователей микромира, первым увидел простейших (и свои собственные сперматозоиды) и назвал их ярким термином «анималькули» («крошечные животные»), противопоставив их микроскопическим водорослям, которые он относил к растениям, зеленым и неподвижным. Но это радикальное подразделение на животных и растений глубоко несовершенно: если мы увеличим некоторых из «крошечных животных» до наших собственных размеров, то с ужасом убедимся, что на самом деле эти монстры представляют полуживотных-полурастения, напоминающие фантастических существ Арчимбольдо. Строго говоря, некоторые подвижные простейшие, активно плавающие в погоне за жертвами, обладают хлоропластами, что сближает их с водорослями. И действительно, они обзавелись хлоропластами, как водоросли — поглотив другие клетки. Иногда проглоченные хлоропласты остаются в рабочем состоянии, помогая своим хозяевам удовлетворять их потребность в пище. В других случаях хлоропласты дегенерируют, и тогда об их славном прошлом напоминают только характерные мембраны и гены, или же, как это бывает с разнообразным хламом в руках кустаря, могут лечь в основу нового изобретения, например глаза. Одна из таких микроскопических химер, а не собственно вольвокс, по мнению некоторых ученых (в том числе такого авторитетного, как Вальтер Геринг), могла быть прародительницей всех животных, от которой они унаследовали свои глаза.