Лестница жизни. Десять величайших изобретений эволюции
Шрифт:
Дыхательная система теропод, судя по всему, была похожа на птичью и позволяла поддерживать высокий уровень активности. Механизм работы легких у птиц отличается от нашего. Он гораздо эффективнее даже на небольших высотах. На больших же высотах разница оказывается колоссальной. Птицы могут извлекать из разреженного воздуха втрое больше кислорода, чем млекопитающие. Именно поэтому гуси способны совершать перелеты, поднимаясь в небо на тысячи футов выше вершины Эвереста, в то время как млекопитающие начинают задыхаться и на куда меньших высотах.
Наши легкие устроены как дерево с глубоким разветвленным дуплом, в которое воздух попадает через отверстие у основания ствола (соответствующее трахее) и заходит в две ветви (соответствующих главным бронхам), где «распускается». Но «веточки» наших легких заканчиваются не острыми концами, а маленькими надувными шариками — альвеолами, стенки которых пронизаны капиллярами. В этих шариках происходит газообмен: здесь гемоглобин, содержащийся в красных кровяных тельцах, отдает углекислый газ и связывает кислород, после чего насыщенная кислородом кровь возвращается в сердце. Вся система шариков при вдохе и выдохе надувается и сдувается, как кузнечные мехи, за счет работы диафрагмы и мышц грудной клетки. Неизбежный недостаток этой системы состоит в том, что разветвленное дупло заканчивается слепыми отростками, где воздух едва перемешивается, хотя именно туда и требуется
Птичьи же легкие представляют собой превосходную модификацию легких рептилий. Легкие у рептилий обычно простые: это всего лишь большие надувные мешки, центральная полость которых разделена перегородками из легочной ткани — так называемыми септами. Легкие рептилий, как и млекопитающих, работают подобно кузнечным мехам — либо за счет расширения грудной клетки, либо (у крокодилов) за счет действующей по принципу поршня диафрагмы, соединенной с печенью и двигаемой мышцами, прикрепленными к лобковой кости. Это делает легкие крокодила похожими на шприц, который тоже наполняется за счет того, что его поршень отводится назад. Хотя этот способ дыхания вполне эффективен, птицы зашли намного дальше, превратив половину своего тела в сложную однонаправленную систему взаимосвязанных воздушных мешков. Воздух входит в их легкие не напрямую, а вначале поступает в воздушные мешки, после чего, уже на выходе, проходит сквозь легкие. В результате воздух в птичьих легких не застаивается, как в наших, а постоянно замещается. Свежий воздух в птичьих легких проходит мимо септ (тоже усовершенствованных) как на вдохе, так и на выдохе. Это происходит за счет движений нижней части грудной клетки и системы воздушных мешков задней части тела. Диафрагмы у птиц нет, что тоже принципиально. Более того, воздух в птичьих легких движется в одну сторону, а кровь — в другую, противоположную, что, согласно принципу противотока, позволяет осуществлять газообмен с максимальной эффективностью [73] .
73
Как скалолаз и бывший курильщик, не раз задыхавшийся высоко в горах, я пытаюсь представить, какие острые ощущения могли бы получать птицы-курильщики. Должно быть, постоянно проходящий через легкие и исключительно эффективно поглощаемый дым сильно бил бы им по мозгам!
Вопрос, разделивший исследователей на два враждовавшие не одно десятилетие лагеря, касается того, какие легкие были у древних теропод: поршневые, как у крокодилов, или вентилируемые сквозным путем, как у птиц. Птичья система воздушных мешков заходит не только в мягкие ткани внутри брюшной полости и грудной клетки, но даже в кости, в том числе в ребра и в позвоночник. Давно было известно, что у ископаемых теропод в костях имелись полости, причем в тех же местах, где и у птиц. Одним из главных разжигателей вражды между специалистами был американский палеонтолог Роберт Бэккер, в 70-х годах на основании этих и других сведений реконструировавший динозавров как активных теплокровных животных. Именно те революционные представления и вдохновили Майкла Крайтона на написание книги «Парк юрского периода», по которой впоследствии был снят одноименный фильм. Однако Джон Рубен и его коллеги реконструировали легкие ископаемых теропод иначе. Они пришли к выводу, что легкие этих динозавров были гораздо ближе к крокодильим, чем к птичьим, и работали по принципу шприца. На одном или двух ископаемых образцах исследователи даже нашли предполагаемые следы диафрагмы. Рубен не отрицал существования воздушных полостей в костях ископаемых теропод, но иначе интерпретировал их назначение. Он утверждал, что полости служили не для того, чтобы помогать вентиляции легких, а, возможно, для уменьшения веса костей — или чтобы двуногим животным было легче удерживать равновесие. Споры не утихали, и без новых данных не было возможности их разрешить. И вот в 2005 году Патрик О’Коннор и Леон Классенс, работавшие тогда в Университете Огайо и в Гарварде соответственно, опубликовали в журнале «Нейчур» статью, ставшую новой вехой в исследовании этой проблемы.
О’Коннор и Классенс начали с того, что подробно исследовали системы воздушных мешков нескольких сотен видов современных птиц (на материале, как они писали, «предназначенных на выброс экземпляров» из центров лечения диких животных и из музеев). Они наполняли воздушные мешки мертвых птиц латексом, что помогало лучше разобраться в анатомии дыхательной системы. Первое, в чем убедились исследователи, — это что система воздушных мешков проникает гораздо глубже, чем они предполагали, и занимает не только часть шеи и груди, но и немалую долю брюшной полости, откуда воздушные мешки проникают в нижние отделы позвоночника. Последняя деталь имела принципиальное значение для интерпретации строения скелетов ископаемых теропод. Работу всей дыхательной системы птиц определяет задний (хвостовой) воздушный мешок. В процессе дыхания он сжимается, проталкивая воздух вперед, в легкие, а затем расширяется, засасывая воздух из связанных с ним воздушных мешков в груди и шее. (Можно привести заумный термин — аспирационный насос). Работа такой системы отчасти похожа на игру на волынке, в которую регулярно подкачивают воздух, чтобы он мог непрерывно выходить из трубок.
О’Коннор и Классенс использовали результаты своего исследования для анализа строения костей ископаемых теропод, в том числе прекрасно сохранившегося скелета динозавра Majungatholus atopus — представителя группы теропод, состоящей в довольно далеком родстве с птицами. Прежде ученые, изучавшие возможность существования у динозавров воздушных мешков, уделяли особое внимание их шейным позвонкам и ребрам, а О’Коннор и Классенс занялись поиском полостей в задних отделах позвоночника. Наличие таких полостей должно было свидетельствовать о том, что у ископаемых теропод имелся задний воздушный мешок. И действительно, исследователям удалось обнаружить именно такие полости, расположенные в точности там же, где и у птиц. Более того, анатомическое строение позвоночника, грудной клетки и грудины в целом указывало на работу аспирационного насоса: повышенная подвижность задних ребер и грудины позволяла сжимать хвостовой воздушный мешок, проталкивавший воздух вперед, и вентилировать легкие. Эти результаты оставляли мало места для сомнений в том, что у ископаемых теропод и впрямь действовал аспирационный насос, подобный птичьему — самая эффективная система дыхания из всех, которыми пользуются позвоночные.
Итак, у ископаемых теропод были перья, четырехкамерное сердце и воздушные мешки, обеспечивавшие сквозную вентиляцию легких, и все это в целом указывает на их активный образ жизни, требующий высокой выносливости. Но действительно ли тероподы могли достичь такой выносливости исключительно за счет настоящей теплокровности, как предполагает гипотеза аэробной мощности, или же они представляли собой «компромиссный» вариант, промежуточный между современными крокодилами и птицами? Хотя наличие
перьев и может указывать на теплоизоляцию, а, значит, и теплокровность, перья древних теропод вполне могли выполнять какие-то иные функции. При этом поиски других свидетельств теплокровности, в том числе носовых раковин, дают результаты, однозначно интерпретировать которые еще сложнее [74] .74
Строение черепов ископаемых теропод может указывать на ощутимые размеры головного мозга, что тоже заставляет предположить у них высокую интенсивность обмена веществ. Однако интерпретировать подобные данные сложно, потому что у многих рептилий отнюдь не вся полость черепа занята мозгом. Следы на внутренней поверхности черепов теропод, вероятно, означают, что сосуды, снабжавшие кровью головной мозг, соприкасались с черепом, а значит, мозг все-таки занимал всю его полость, но этот вывод нельзя считать окончательным. Кроме того, существуют и более дешевые способы обзавестись крупным мозгом, чем переход к теплокровности, то есть большой мозг еще не обязательно означает теплокровность.
У большинства птиц, как и у большинства млекопитающих, имеются носовые раковины, однако они состоят не из костей, как у человека, а из хрящей, которые в ископаемом виде плохо сохраняются. До сих пор у теропод не обнаружено никаких признаков носовых раковин, хотя образцов достаточно хорошей сохранности, чтобы судить об этом, известно немало. Джон Рубен отмечает, что у птиц, имеющих носовые раковины, всегда увеличены носовые ходы. Причина здесь предположительно в том, что тонкие завитки носовых раковин в некоторой степени затрудняют прохождение воздуха, а увеличение носовых ходов позволяет компенсировать это неудобство. Впрочем, носовые ходы ископаемых теропод не особенно велики, и мы не находим у них носовых раковин не оттого, что те не сохранились, а оттого, что их не было. Могли ли тероподы быть теплокровными, не имея носовых раковин? Ну, учитывая, что мы, сами будучи теплокровными, не имеем таких раковин, следует ответить на этот вопрос утвердительно, но это допущение ставит перед нами еще несколько вопросов.
Сам Рубен считает, что ископаемые тероподы все-таки обладали высокой аэробной мощностью, но не были теплокровными, хотя его собственная гипотеза аэробной мощности предполагает, что одно должно быть связано с другим. Мы знаем еще слишком мало, чтобы ответить на этот вопрос уверенно, но сложившееся к настоящему времени общее мнение (если его можно считать общим), таково: уровень обмена веществ в состоянии покоя у ископаемых теропод был, по-видимому, повышен, но настоящей теплокровности у них все же не было. По крайней мере, именно на это указывают ископаемые остатки. Однако горные породы содержат не только ископаемых, но и многое другое, в том числе свидетельства о климате и составе атмосферы прошлого. И эти свидетельства говорят нам об атмосфере триасового периода нечто такое, в свете чего данные палеонтологической летописи принимают совсем другой оборот. Эти сведения помогают не только объяснить высокую аэробную мощность цинодонтов и теропод, но и ответить на вопрос, почему господствующее положение в итоге заняли динозавры.
Проблемы физиологии обычно обсуждают так, будто участники обсуждения пребывают в историческом вакууме: исходя из того, что в прошлом все было так же, как теперь, и что силы отбора неизменны, как сила тяготения. Но это не так, доказательством чему служат великие вымирания. Самое грандиозное произошло в конце пермского периода, около 250 миллионов лет назад, и послужило прелюдией к начавшемуся сразу после него неудержимому взлету «правящих ящеров» и эре динозавров.
Пермское вымирание часто называют одной из великих загадок жизни (наряду с целым рядом других явлений, на изучение которых охотнее выделяют гранты), но условия среды, тот фон, на котором оно происходило, пока описаны лишь в общих чертах. На самом деле это было даже не одно вымирание, а два, разделенные промежутком почти в десять миллионов лет — временем отчаянного упадка. Оба вымирания соответствуют продолжительным периодам повышенной вулканической активности — самым масштабным излияниям лавы в истории Земли, похоронившим обширные территории (чуть ли не целые континенты) под толстым слоем базальтов. Эрозия застывших потоков этой лавы привела к появлению участков со ступенчатым рельефом — так называемых траппов. Первый всплеск вулканической активности, случившийся около 260 миллионов лет назад, привел к образованию Эмэйшаньских траппов в Китае. Восемь миллионов лет спустя последовал второй всплеск, еще более масштабный, в результате которого возникли Сибирские траппы. Принципиально здесь то, что и Эмэйшаньские, и сибирские вулканические потоки извергались, пробиваясь сквозь слои, содержавшие карбонатные породы и уголь. Это важно потому, что при реакции раскаленной лавы с такими породами в атмосферу в огромных количествах выделялись углекислый газ и метан, и это происходило при каждом извержении на протяжении не одной тысячи лет [75] . А в результате менялся климат.
75
Свидетельства всего этого сохранились в отложившихся в те времена породах в виде изотопного состава содержащихся в них элементов. Желающим узнать об этом больше осмелюсь порекомендовать свою собственную статью «Читая книгу смерти» (Lane, N. Reading the Book of Death 11 Nature 448: 122–125; 2007).
Рис. 8.1. Поток воздуха, проходящий через птичьи легкие на вдохе (о) и на выдохе (b). Воздушные мешки: 1 — ключичный, 2 — черепной, 3 — хвостовой-грудной, 4 — брюшной. Воздух непрерывно проходит сквозь легкие в одном и том же направлении, в то время как кровь течет в противоположную сторону, чем по принципу противотока обеспечивается высокоэффективный газообмен.
Было предпринято немало попыток вычислить «убийцу», стоявшего за пермскими вымираниями. Приводились убедительные аргументы в пользу того, что им было глобальное потепление, истощение озонового слоя, выделение метана и углекислого газа, кислородное голодание, отравление сероводородом, и так далее. Единственная возможная причина, которая более или менее исключена — это столкновение с метеоритом: нет почти никаких данных, указывающих на то, что в конце пермского периода происходили какие-либо столкновения, похожие на последовавшее почти двести миллионов лет спустя и ознаменовавшее собой финал продолжительного господства динозавров. Однако все остальные из перечисленных причин вполне правдоподобны, и большим достижением последних лет стало открытие, что все они неразрывно связаны друг с другом. Любой всплеск вулканической активности, сравнимый по масштабам с тем, что привел к образованию Эмэйшаньских траппов, неизбежно должен был запустить целый каскад неотвратимых взаимозависимых изменений — леденящую сердце последовательность. Сходные каскады угрожают нам и сегодня, хотя (пока) они несопоставимы по масштабам с пермскими.