Мотоциклы
Шрифт:
В головке цилиндров имеется камера сжатия. Она должна обеспечивать хорошее наполнение цилиндра двигателя рабочей смесью, хорошее распространение пламени, без детонационного сгорания, и минимальные потери тепла.
В основном все камеры сжатия мотоциклетных двигателей можно разделить на три группы: полусферические, шатровые и вихревые.
На рис. 20 показана полусферическая камера сжатия двухтактного двигателя мотоцикла М1А.
Рис. 20. Головка цилиндра двигателя мотоцикла М1А с полусферической камерой сжатия: 1 — головка цилиндра; 2 — камера сжатия.
Полусферическая камера является наилучшей по своей форме,
У четырехтактных двигателей полусферические камеры обеспечивают хорошее наполнение цилиндров двигателя горючей смесью, так как горючая смесь поступает из карбюратора в цилиндр по наиболее прямому пути. Но полусферическая камера четырехтактных двигателей имеет более сложное устройство вследствие того, что в ней, кроме свечи, должны быть расположены клапаны.
Это в свою очередь усложняет привод к клапанам, тем более, что при полусферической камере клапаны расположены относительно друг друга под некоторым углом.
Шатровые камеры сжатия (рис. 21) по своей форме очень близки к полусферическим.
Рис. 21. Цилиндр с шатровой камерой сжатия.
Достоинство шатровых камер заключается в том, что в них обеспечивается удобное расположение клапанов максимального диаметра.
Полусферические и шатровые камеры имеют наибольшее распространение на современных мотоциклах, незначительная сложность их производства окупается высокой мощностью двигателей в результате хорошего наполнения цилиндров и хорошего использования тепла в камере сжатия.
Для четырехтактных двигателей дорожных и тяжелых мотоциклов применяется вихревая камера сжатия (рис. 22).
Рис. 22. Цилиндр с вихревой камерой сжатия.
Она расположена в стороне от цилиндра, над клапанами. Гнезда и направляющие втулки клапанов выполнены в теле цилиндра сбоку. При таком расположении клапанов горючая смесь, поступающая из карбюратора через клапан в камеру сжатия снизу вверх, после входа туда резко меняет свое направление и идет из камеры сжатия в цилиндр уже сверху вниз. При такой форме камеры увеличивается сопротивление горючей смеси на входе в цилиндр двигателя и, следовательно, уменьшается наполнение цилиндра. Достоинство этой камеры заключается в том, что пути распространения пламени удлиняются, сгорание рабочей смеси несколько замедляется и двигатель работает более мягко. Кроме того, при небольшом зазоре (2–3 мм) между днищем поршня и стенкой камеры сжатия обеспечивается охлаждение тонкого слоя рабочей смеси, находящейся в этом зазоре и наиболее удаленной от свечи. Это уменьшает способность рабочей смеси к детонационному сгоранию, так как охлажденная в зазоре рабочая смесь к моменту сгорания не успевает образовать с кислородом воздуха нестойкие соединения, сгорающие со взрывной скоростью.
Для уплотнения между головкой и плоскостью цилиндра устанавливаются прокладки, которые препятствуют сообщению с атмосферой в стыке плоскостей головки и цилиндра. Форма этих прокладок зависит от формы плоскости соприкосновения головки и цилиндра. Для изготовления прокладок применяются различные материалы. В частности, на двигателе мотоцикла М-72 прокладка выполнена из мелкой латунной сетки, в которую вплетены волокна асбеста. Перед установкой прокладка покрывается порошком графита, чтобы волокна асбеста не прилипали к плоскости головки и цилиндра. В настоящее время на двигателе мотоцикла М-72 применяется прокладка из алюминия. На некоторых мотоциклетных двигателях применяется прокладка из красной меди. Для увеличения упругости и лучшего уплотнения зазора на прокладке выштампованы канавки.
2. Поршни, поршневые пальцы, поршневые кольца
Поршень воспринимает давление газов при сгорании рабочей смеси в цилиндре двигателя и через шатун передает его коленчатому валу.
Во время работы двигателя поршень подвергается механической
нагрузке от давления газов, изменяющегося за рабочий цикл от 0,8 кг/см2 (на такте впуска) до 40 кг/см2 (в момент сгорания рабочей смеси). Кроме того, температура газов, соприкасающихся с днищем поршня, изменяется за рабочий цикл от 50 °C до 2200 °C и температура днища поршня в процессе работы достигает средней величины — 250–350 °C.У высокооборотных мотоциклетных двигателей средняя скорость движения поршня достигает 15–20 м/сек и соответственно силы инерции поршня также достигают значительной величины. Следовательно, поршень работает в условиях резко меняющихся тепловых и механических нагрузок и прочность его в известной степени понижена вследствие нагревания до высокой температуры. Кроме того, механические и тепловые нагрузки значительно ухудшают условия смазки поршня. Поэтому к поршням современных мотоциклетных двигателей предъявляются следующие требования:
1) обеспечение герметичности между рабочей полостью цилиндра и картером;
2) невысокая температура поршня и отсутствие местных перегревов;
3) отсутствие заедания, стука и перекоса поршня в цилиндре во время работы;
4) высокая прочность ври минимальном весе;
5) минимальные потери на трение между поршнем и цилиндром;
6) минимальный износ стенок поршня и цилиндра.
Герметичность между рабочей полостью цилиндра и картером обеспечивается наличием на головке поршня канавок, в которых установлены компрессионные кольца, перекрывающие зазор между стенками поршня и цилиндра, и маслосъемные кольца, очищающие поверхность цилиндра от масла и не допускающие проникновения его в рабочую полость цилиндра.
Температура поршня зависит от количества тепла, передающегося поршню от горячих газов, а также от количества тепла, передаваемого от поршня через кольца и его юбку стенкам цилиндра и от внутренней поверхности поршня маслу и воздуху в картере. Небольшой отбор тепла поршнем от газов в такте расширения улучшает условия полного сгорания горючего в цилиндре двигателя, так как в этом случае температура газов, а следовательно, и давление их будут более высокими.
Таким образом, чем меньше тепла поршень будет принимать от горячих газов и чем больше тепла будет передаваться от поршня цилиндру и воздуху в картере, тем ниже будет средняя температура поршня. При низкой средней температуре поршня улучшается наполнение цилиндра двигателя горючей смесью, так как в этом случае горючая смесь при впуске меньше нагревается от поршня и плотность ее к началу сжатия сохраняется достаточно высокой. Низкая температура поршня допускает повышение степени сжатия, потому что сравнительно небольшое нагревание рабочей смеси в процессе сжатия уменьшает возможность образования перекисей, а следовательно, и уменьшает возможность детонационного сгорания горючего. Кроме того, при низкой температуре поршня уменьшается его тепловое расширение, что ограничивает возможность заедания, стуков и перекоса поршня в цилиндре во время работы двигателя.
Уменьшение заеданий, стуков и перекосов поршня в цилиндре осуществляется также подбором материала для изготовления поршня и установлением определенных зазоров между поршнем и цилиндром в различных точках поршня. Величина зазора между стенками поршня и цилиндром подбирается в зависимости от температуры поршня и цилиндра, а также в зависимости от теплового расширения материала, из которого изготовлен поршень. Зазор между стенками поршня и цилиндра должен обеспечивать свободное перемещение поршня в цилиндре при высокой температуре и сохранение минимально необходимого слоя масла между стенкой поршня и цилиндром. В головке поршня зазор делается несколько большим, чем в юбке, так как головка поршня нагревается в большей степени. Этот зазор должен быть минимальным и у холодного, и у горячего двигателя. Но так как поршни мотоциклетных двигателей обычно выполняются из алюминиевого сплава, который обладает большим тепловым расширением, величина зазора между юбкой и цилиндром сильно изменяется после пуска и прогрева двигателя, а при перегреве двигателя зазор может совсем исчезнуть. Вследствие этого может произойти заклинивание поршня: поршень плотно прижмется к стенкам цилиндра и трение между ними увеличится настолько, что двигатель остановится. При сильном перегреве двигателя заклинивание поршня может привести к отрыву юбки поршня от его головки или к разрыву стержня шатуна.