Мотоциклы
Шрифт:
При перемещении поршня от нижней мертвой точки к верхней до момента перекрытия поршнем продувочного окна горючая смесь из кривошипной камеры продолжает поступать в цилиндр двигателя После перекрытия поршнем продувочного окна в кривошипной камере снова создается разрежение и снова горючая смесь поступает из карбюратора в кривошипную камеру.
В конце хода сжатия осуществляется зажигание рабочей смеси искрой, проскакивающей между электродами запальной свечи.
Воспламенение рабочей смеси начинается несколько ранее верхней мертвой точки (в точке с' на рис. 14) и продолжается после того, как поршень после верхней мертвой точки начнет перемещаться к нижней мертвой точке.
Рис. 14. Процесс
При правильно подобранном моменте зажигания и наивыгоднейшем соотношении горючего и воздуха в рабочей смеси максимальное давление в цилиндре двигателя наступит, когда коленчатый вал повернется на 15–20° после верхней мертвой точки. При полном открытии дроссельного золотника максимальное давление достигнет 30–35 кг/см2, температура газов в этот момент повысится до 2000–2200 °C.
При дальнейшем перемещении поршня вниз происходит догорание рабочей смеси и расширение газов.
К моменту открытия выпускного окна давление в цилиндре уменьшается До 3–5 кг/см2 и температура газов — до 700-1000 °C.
После открытия выпускного окна давление в цилиндре резко падает. Через 5—15° поворота коленчатого вала после открытия продувочного окна оно равно примерно 1,2–1,25 кг/см2, т. е. из цилиндра к этому моменту выйдет почти 70 % всего объема отработавших газов. При перемещении от верхней мертвой точки к нижней поршень снова сжимает в кривошипной камере поступившую туда из карбюратора горючую смесь. С момента открытия продувочного окна начинается выталкивание поступающей из кривошипной камеры горючей смеси и находящихся еще в цилиндре отработавших газов. При этом происходит частичное перемешивание горючей смеси с остаточными газами, а также выбрасывание части рабочей смеси вместе с отработавшими газами в выпускную трубу. Это вызывает уменьшение наполнения цилиндров горючей смесью и увеличение расхода горючего.
При положении поршня в нижней мертвой точке давление в цилиндре двигателя падает до 1 кг/см2.
На рис. 15 показано изменение давления в цилиндре двигателя во время тактов сжатия и расширения.
Рис. 15. Среднее индикаторное давление двухтактного двигателя: а — начало сжатия; с" — конец сжатия; Z — конец видимого горения; е — начало выпуска.
Как и в четырехтактном двигателе, полезная работа, развиваемая за один рабочий цикл, в двухтактном двигателе равна разности работ — работы, получаемой при расширении, и работы, затрачиваемой на сжатие. Полезная работа двигателя на рис. 15 показана в виде площади, ограничиваемой кривой ac"Zea.
Для удобства определения индикаторной мощности построим прямоугольник, площадь которого равна площади, ограничиваемой кривой ac"Zca, а длина соответствует расстоянию, проходимому поршнем от одной мертвой точки до другой. В этом случае высота прямоугольника будет равна средней высоте индикаторной диаграммы, которая в масштабе, отложенном на вертикали, соответствует среднему индикаторному давлению.
Индикаторная мощность для двухтактного двигателя определяется так же, как и для четырехтактного, с той лишь разницей, что число циклов для двухтактного двигателя будет равно числу оборотов коленчатого вала двигателя.
В отличие от четырехтактных двигателей, степень сжатия двухтактного двигателя имеет два значения:
номинальная степень сжатия и действительная степень сжатия.Номинальной степенью сжатия называется отношение суммы объема камеры сжатия и рабочего объема цилиндра к объему камеры сжатия. Под рабочим объемом цилиндра подразумевается объем, описываемый поршнем при его перемещении от одной мертвой точки до другой.
Действительной степенью сжатия называется отношение объема камеры сжатия и полезного объема цилиндра в момент закрытия органов газораспределения к объему камеры сжатия.
Полезным объемом цилиндра называется объем, описываемый поршнем при его перемещении от верхнего края выпускного окна до верхней мертвой точки.
6. Требования, предъявляемые к мотоциклетным двигателям
Мотоциклетные двигатели работают в различных атмосферных дорожных условиях при переменной нагрузке и переменном числе оборотов и должны обеспечивать достаточную скорость движения и экономичную работу мотоцикла.
К современным мотоциклетным двигателям предъявляется ряд требований по следующим основным показателям, оказывающим существенное влияние на ходовые качества мотоцикла: надежность работы и долговечность, экономичность работы на стандартном для данного двигателя горючем, приемистость, уравновешенность, равномерность хода, достаточная литровая мощность, небольшой удельный вес, малые габариты, простота ухода за двигателем и его ремонта.
Надежность работы и долговечность двигателя зависят от качества применяемого для его изготовления материала, точности обработки и подгонки деталей, а также от качества применяемых горючего и масла. Большое влияние на надежность работы и долговечность двигателя оказывает поддержание нормального теплового режима работы двигателя в процессе эксплуатации.
Экономичность работы двигателя обеспечивается небольшими потерями (на трение внутри двигателя, на заполнение цилиндров горючей смесью и на выпуск отработавших газов из цилиндра), наиболее выгодным соотношением горючего и воздуха в горючей смеси для каждого режима работы двигателя, а также наиболее полным сгоранием горючего внутри цилиндра двигателя.
Приемистость двигателя — способность двигателя быстро увеличивать обороты и мощность при резком открытии дроссельного золотника карбюратора. Приемистость двигателя зависит от качества работы карбюратора и системы распределения, обеспечивающих быстрое изменение нагрузки двигателя. Чем больше приемистость двигателя, тем при прочих равных условиях выше способность мотоцикла набирать скорость, а следовательно, обеспечивать высокую среднюю скорость движения.
Уравновешенным является такой двигатель, у которого силы, действующие на раму мотоцикла, при установившемся режиме его работы постоянны по величине и направлению. Это значит, что двигатель, а с ним и рама мотоцикла, не колеблются в вертикальном и горизонтальном направлениях вследствие изменения величины и направления действия сил, возникающих в работающем двигателе. Чем уравновешеннее двигатель, тем меньше колебаний в раме, руле и других агрегатах и механизмах мотоцикла, влияющих непосредственно на плавность движения и утомляемость водителя.
Равномерность хода двигателя — способность двигателя незначительно изменять скорость вращения коленчатого вала в период между следующими один за другим рабочими ходами. Равномерность хода зависит от числа цилиндров, массы маховика, числа оборотов коленчатого вала и равномерности чередования вспышек в цилиндрах двигателя. Маховик, накапливающий живую силу в момент рабочего хода, отдает ее затем на поддержание скорости вращения коленчатого вала. Живая сила маховика затрачивается на преодоление трения в двигателе, на выпуск отработавших газов, впуск горючей смеси и на сжатие ее. Вследствие этого скорость вращения коленчатого вала двигателя уменьшается к началу следующего рабочего хода. Если маховик обладает достаточной массой и чередование вспышек происходит через равномерные и небольшие отрезки времени, то скорость вращения коленчатого вала двигателя между следующими один за другим рабочими ходами будет уменьшаться незначительно. Чем выше равномерность вращения коленчатого вала двигателя, тем плавнее ход мотоцикла.