Чтение онлайн

ЖАНРЫ

Музыка сфер. Астрономия и математика
Шрифт:

В результате в течение короткого промежутка времени наблюдается яркая вспышка, по которой и можно обнаружить звезду. Галактики и скопления галактик, имеющие огромную массу, искривляют свет других небесных тел. С 1979 года, когда была обнаружена первая гравитационная линза, эти объекты остаются предметом множества исследований.

В 1912 году Эйнштейн в одной из заметок предсказал этот эффект, однако не опубликовал его, сочтя малозначимым. Один из друзей учёного напоминал ему об этом эффекте снова и снова, и в 1936 году Эйнштейн наконец-то опубликовал свою заметку, чтобы «порадовать бедного мальчика», а сегодня гравитационные линзы являются одним из важных методов астрономических исследований.

Гравитационные линзы: не затемняют, а увеличивают

В действительности Эйнштейн предсказал существование

гравитационных линз, то есть явления, при котором звезда, расположенная ближе к нам, способна увеличивать изображение более далёкой звезды. Однако сам учёный не верил, что гравитационные линзы когда-либо можно будет увидеть, и счёл эту гипотезу слишком маловероятной. Современные астрономы с помощью гравитационных линз наблюдают за далёкими уголками Вселенной. Сам космос даёт им в руки мощнейшие телескопы, которые позволяют заглянуть очень далеко в пространство и время. Изучение гравитационных линз всё ещё можно считать относительно молодым разделом астрономии.

Свет всегда распространяется по кратчайшему пути, однако в присутствии больших масс пространство искривляется, и этим кратчайшим путём становится кривая.

Понять это явление не так сложно, достаточно провести параллель с поверхностью земного шара, где кратчайшим путём между двумя точками обязательно будет отрезок кривой.

В общем случае гравитационные линзы можно представить как обычные линзы с тем отличием, что отклонение света вызвано их массой, а не преломлением лучей. Обычная выпуклая линза имеет чётко определённый фокус, а гравитационная линза фокусирует свет не в точке, а в некоторой области.

* * *

ОТКЛОНЕНИЕ ЛУЧА СВЕТА, ВЫЗВАННОЕ КРИВИЗНОЙ ПРОСТРАНСТВА

Смоделировать искривление пространства, вызванное чёрной дырой, очень просто. Нам понадобится эластичная ткань, в центр которой мы поместим тяжёлый шар. Если теперь мы бросим на поверхность ткани мяч поменьше, он будет двигаться вдоль кривой, подобно лучу света, который также будет двигаться не по прямой, а по кривой, как показано на рисунке. Степень отклонения от прямолинейной траектории зависит от того, насколько близко свет проходит от массивного тела в центре. Угол отклонения прямо пропорционален массе центрального тела и обратно пропорционален расстоянию до него.

* * *

Гравитационные линзы, по сути, искривляют лучи света. В результате нам кажется, что небесные тела находятся в другом месте и имеют больший размер, чем на самом деле. Так как гравитационные линзы не фокусируют лучи в одной точке, наблюдаемые небесные тела искажаются.

В результате отклонения лучей света может показаться, что звезда, галактика или квазар располагаются вовсе не там, где они находятся на самом деле. Также гравитационная линза может изменять размеры объектов. Некоторые наблюдатели отмечают увеличение реальных объектов более чем в 100 раз.

Так как гравитационные линзы не имеют единственного фокуса, один и тот же объект может отображаться в них несколько раз, что можно видеть на иллюстрации на следующей странице. Хорошо известны множественные изображения квазаров, имеющие форму так называемого креста Эйнштейна.

Так как гравитационные линзы не имеют единственного фокуса, один и тот же объект в них может отображаться несколько раз. На фото выше изображён кратный квазар, известный как крест Эйнштейна.

* * *

ГРАВИТАЦИОННАЯ ЛИНЗА НА НОЖКЕ БОКАЛА

Чтобы смоделировать гравитационную линзу, достаточно отломить ножку бокала и посмотреть сквозь её плоскую часть. Если мы поставим бокал на миллиметровую бумагу, то

увидим те же искажения, что и на фотографии.

Будем медленно двигать бокал справа налево по поверхности какого-либо предмета, который послужит моделью небесного тела, и воссоздадим наблюдаемые объекты: дуги, крест Эйнштейна и кольцо Эйнштейна, как показано на фотографиях на следующей странице.

Мы также можем смоделировать эти искажения с помощью бокала для вина, на который будем смотреть сверху. Чтобы увидеть кольцо Эйнштейна или кратные изображения объектов, можно использовать светодиодную лампу, расположенную с другой стороны бокала так, чтобы луч проходил через него. Перемещая бокал справа налево и сверху вниз, вы увидите, как будут возникать повторяющиеся изображения, в некоторых случаях — дуги. Они возникают вследствие того, что бокал, подобно линзе, искривляет пространство. В частности, вы сможете увидеть бесформенную фигуру, четыре точки вместо одной или дугу между точками.

* * *

Как заглянуть вперёд в пространство и время

В астрономии, помимо парсеков и астрономических единиц, также используются световые года. Понять смысл этой единицы измерения очень просто, поэтому она крайне полезна в научно-популярных целях. Кроме того, она отражает удивительный факт: глядя на звёздное небо, мы видим множество небесных тел такими, как они выглядели когда-то в прошлом. Кроме того, мы видим астрономические объекты из разных эпох.

Как известно, скорость света c равняется 300000 км/с. Следовательно, одна световая секунда равна 300000 км. К примеру, свет Луны, отстоящей от Земли на 384000 км, достигает Земли за 384000/300000=1,28 секунды. Расстояние от Солнца до Земли луч света преодолевает за 8,3 минуты.

Из Южного полушария можно видеть звезду Проксима Центавра (в Северном полушарии она не видна) — ближайшую к нам звезду, расположенную на расстоянии 4,3 светового года. Сириус, ярчайшая звезда из тех, что можно наблюдать на большей части Северного полушария, находится на расстоянии 8,6 светового года от Земли. В обоих случаях очевидно, что свет, который мы видим, преодолел расстояние до Земли за несколько лет или даже больше.

Туманность Ориона, называемая прекраснейшей, — это звёздная колыбель, в которой в настоящее время зарождается примерно 700 звёзд. Расположена она в 1500 световых годах от нас. Иными словами, такой, какой мы её видим сегодня, эта туманность была во времена падения Римской империи (476 год н. э.), когда от престола отрёкся император Ромул Август.

Если говорить о галактиках, то с увеличением расстояний всё становится ещё интереснее. Рассмотрим, например, галактику Андромеды, которую можно увидеть невооружённым глазом, так как она расположена не слишком далеко от Земли. Это спиральная галактика, напоминающая Млечный Путь, поэтому при взгляде на неё можно представить, что мы видим нашу галактику издалека. Галактика Андромеды удалена от нас на расстояние 700 килопарсек, то есть более 2 млн световых лет. Таким образом, сейчас мы видим эту галактику такой, какой она выглядела, когда по Земле шагали первые гоминиды.

Туманность Ориона на фотографии, сделанной космическим телескопом «Хаббл» (слева), и галактика Андромеды.

Возможно, сейчас она выглядит совершенно иначе. К примеру, сверхновая звезда SN 1987А, вспышка которой наблюдалась в 1987 году в Большом Магеллановом Облаке, годом ранее не была видна с Земли, однако к тому моменту вспышка уже произошла — чтобы свет от неё достиг Земли, потребовалось 168 тысяч лет, поскольку эта звезда находится на расстоянии 51,4 килопарсека от Земли. Гравитационные линзы позволяют увидеть очень и очень далёкие объекты, то есть объекты, удалённые на очень много световых лет. Иными словами, гравитационные линзы помогают заглянуть ещё дальше в прошлое.

Поделиться с друзьями: