Чтение онлайн

ЖАНРЫ

Музыка сфер. Астрономия и математика
Шрифт:

Сверхновая SN1987А в Большом Магеллановом Облаке во время вспышки и четырьмя годами позже, когда всё ещё наблюдалось её световое эхо.

Ещё один вид затмений: прохождение Меркурия и Венеры по диску Солнца

Прохождение одной из внутренних планет (Меркурия или Венеры) по диску Солнца, или астрономический транзит, — это явление, когда планета проходит перед Солнцем, заслоняя его часть. Прохождения планет по диску Солнца сыграли очень важную роль в истории человечества, помогая совершать прорывы в астрономии.

Астрономический

транзит наблюдается в случае, когда Солнце, внутренняя планета и Земля расположены на одной линии. Точно так же располагаются планеты при солнечном затмении, только вместо Луны по диску Солнца проходит одна из планет. Так как Меркурий и Венера находятся намного дальше от нас, чем Луна, они видны как небольшое пятно на поверхности светила. Это пятно движется по его диску, и если сделать серию фотографий во время прохождения, а затем совместить их, то можно будет чётко увидеть траекторию планеты.

Слева — транзит Меркурия. Вы можете видеть траекторию его прохождения по диску Солнца. Справа — прохождение Венеры по диску Солнца.

Вы можете видеть траекторию Венеры и её размер по сравнению с Солнцем. Так как орбиты Меркурия и Венеры слегка наклонены относительно эклиптики, транзит наблюдается только когда эти планеты располагаются вблизи линии узлов (линии пересечения плоскостей их орбит с плоскостью эклиптики). Существуют достаточно сложные правила, позволяющие рассчитать периодичность астрономических транзитов. В среднем прохождение Меркурия по диску Солнца наблюдается 13 раз за 100 лет и описывается очень сложными законами.

Прохождения Венеры по диску Солнца наблюдаются ещё реже: они происходят 4 раза каждые 243 года с интервалами в 105,5; 8; 121,5 и 8 лет. Обычно рассматриваются пары прохождений с интервалом в 8 лет. Цикл в 243 года относительно стабилен, однако интервалы между отдельными прохождениями меняются, так как Венера отклоняется от орбиты под действием притяжения других планет.

Первое прохождение планеты по диску Солнца

Основываясь на результатах наблюдений Тихо Браге, Кеплер составил так называемые Рудольфинские, или Рудольфовы, таблицы, достаточно точно описывающие движение планет. Руководствуясь этими таблицами, в 1629 году Кеплер объявил, что Меркурий пройдёт по диску Солнца 7 ноября 1631 года, Венера — 6 декабря того же года. Он предвидел, что наблюдение этих астрономических транзитов можно будет произвести с помощью камеры-обскуры, проделав небольшое отверстие в плотно закрытом окне и спроецировав изображение Солнца на экран.

Прохождение Меркурия по диску Солнца удалось увидеть благодаря тому, что некоторые астрономы установили возле отверстия камеры-обскуры подзорную трубу и получили таким образом увеличенное изображение Солнца. Так, одно из наблюдений было произведено в Париже, где Пьер Гассенди отметил, что диаметр Меркурия, к его удивлению, составлял всего лишь 12'', то есть намного меньше, чем ожидалось. Наблюдать прохождение Венеры по диску Солнца в декабре того же года не удалось, так как оно произошло после того, как Солнце в Европе уже село.

Несколько лет спустя английский священник Джереми Хоррокс (1618–1641), изучавший математику и астрономию в Кембридже, рассчитал, что следующее прохождение Венеры по диску Солнца произойдёт 4 декабря 1639 года. В этот день Хоррокс произвёл необходимые наблюдения — в 15:15, 15:35 и 15:45 — и заметил, что диаметр Венеры составлял менее 1' (диаметр Солнца составлял примерно 30').

Джереми Хоррокс наблюдает прохождение Венеры по диску Солнца в тёмной комнате

с помощью увеличительного стекла.

В 1640 году английский астроном и математик Уильям Гаскойн расположил несколько нитей в фокусе телескопа, закрепив их так, что их можно было перемещать. Так был изобретён микрометр, и телескоп из простого прибора для качественных наблюдений стал устройством для проведения точных измерений даже очень маленьких углов. Кроме того, к такому телескопу можно было присоединить размеченный круг для измерения других угловых величин.

В различных изданиях «Математических начал натуральной философии» и «Оптики» Ньютон приводит разные оценки расстояния между Землёй и Солнцем, то есть параллакса Солнца, которые варьировались от 10 до 13 м. В то время было достоверно известно лишь то, что параллакс Солнца не может превышать 15'' (реальное значение, используемое в наши дни, составляет 8,794148 м). Точное значение параллакса Солнца требовалось для корректировки астрономических таблиц, которые использовали не только астрономы, но и мореплаватели. Кроме того, доступные на тот момент знания о Солнечной системе позволяли определить относительные расстояния между всеми планетами, и оставалось вычислить лишь одно из расстояний, к примеру параллакс Солнца, в явном виде.

Эдмунд Галлей, наблюдавший прохождение Меркурия по диску Солнца в 1677 году, предложил определить параллакс Солнца во время прохождения Венеры в 1761 и 1769 годах. Предложенный им метод заключался в наблюдении прохождения Венеры из двух удалённых точек, при этом требовалось точно зафиксировать момент начала и конца прохождения. Было необходимо выразить угловое расстояние между траекториями Венеры, наблюдаемыми из двух удалённых точек, как часть диаметра Солнца, затем определить этот диаметр в милях и, наконец, рассчитать расстояние от Солнца до Земли. Таким образом, для наблюдений требовались только хороший телескоп и точные часы. К тому же наблюдать за транзитом Венеры было удобнее, чем за транзитом Меркурия: даже при наблюдении Венеры угловое расстояние имеет порядок всего 1/30 диаметра Солнца, а поскольку Меркурий находится ближе к светилу, то искомое угловое расстояние ещё меньше.

Астрономический транзит Венеры был крайне важен для расчёта расстояния от Земли до Солнца, однако транзит Меркурия представлял не меньший интерес.

Французский математик Урбен Жан Жозеф Леверье, изучив результаты наблюдений транзита Меркурия, выполненные с 1631 года до середины XIX века, открыл движение перигелия Меркурия, которое оказало огромное влияние на теорию относительности Эйнштейна.

Причины парного транзита Венеры

Период обращения Венеры вокруг Солнца составляет 224,7 дня, период обращения Земли — 365,25 дня. Разделив 365,25 на 224,7, получим 1,6255. Таким образом, за то время, пока Земля совершает полный оборот вокруг Солнца, Венера совершает 1,6255, или примерно 13/8 оборота. Следовательно, можно сказать, что если Земля совершает n оборотов вокруг Солнца, то Венера — 13n/8 оборотов.

Когда положение Земли и Венеры совпадёт? Очевидно, тогда, когда 13n/8 будет натуральным числом, то есть когда п будет кратно 8. Таким образом, каждые 8 лет

Солнце, Земля и Венера должны располагаться на одной линии. Это означает, что прохождение Венеры по диску Солнца можно наблюдать с Земли каждые 8 лет, однако взглянув на таблицу, вы увидите, что в действительности всё обстоит иначе.

Иногда прохождения Венеры действительно наблюдаются с интервалом в 8 лет, однако это бывает реже, чем раз в столетие. Почему так происходит? Ответ прост: приведённые выше расчёты были бы верны, если бы плоскости, в которых находятся орбиты Венеры и Земли (плоскости эклиптики), совпадали. Однако плоскость орбиты Венеры наклонена относительно плоскости орбиты Земли на 3,4°. Следовательно, транзит Венеры можно будет наблюдать только когда и Земля, и Венера будут располагаться вблизи линии узлов, то есть линии пересечения плоскостей их орбит. Иными словами, расстояние между орбитами планет должно быть меньше диаметра Солнца.

Поделиться с друзьями: