Чтение онлайн

ЖАНРЫ

Начало бесконечности. Объяснения, которые меняют мир
Шрифт:

Верно математическое высказывание или нет, действительно не зависит от физики. Но его доказательство – дело только физики. Невозможно что-то абстрактно доказать, как невозможно и что-то абстрактно знать. Математическая истина – вещь абсолютно необходимая и трансцендентная, но все знания создаются в ходе физических процессов, а их объем и ограничения обусловлены законами природы. Можно определить класс абстрактных сущностей и назвать их доказательствами (или вычислениями) точно так же, как определить иные абстрактные сущности и назвать их треугольниками и заставить подчиняться законам евклидовой геометрии. Но нельзя вывести из этой «теории треугольников» некое представление о том, на какой угол вы повернетесь, если обойдете замкнутый контур, состоящий из трех прямых линий. Точно так же такие «доказательства» не позволят проверить истинность математических утверждений. Математическая «теория доказательств» не имеет отношения к тому, какие истины можно, а какие нельзя доказать или знать в реальности; аналогично теория абстрактных «вычислений» не имеет отношения к тому, что можно, а что нельзя в реальности

вычислить.

Таким образом, вычисление или доказательство – это физический процесс, в котором такие объекты, как компьютер или мозг, физически моделируют или воплощают абстрактные сущности, как, например, числа или уравнения, и имитируют их свойства. Это наше окно в мир абстрактного. И оно действует, потому что мы используем такие сущности лишь при наличии разумных объяснений, говорящих, что абстрактные свойства действительно воплощаются в соответствующих физических переменных применяемых объектов.

Как следствие, достоверность наших знаний о математике всегда будет проистекать из достоверности знаний о физической действительности. Корректность любого математического доказательства полностью зависит от правильности наших представлений относительно законов, определяющих поведение некоторых физических объектов, таких как компьютеры, чернила и бумага или мозг. Таким образом, в противовес тому, что считал Гильберт, и тому, во что со времен античности верили и верят до сих пор почти все математики, теория доказательств никогда не станет направлением математики. Теория доказательств – это естественная наука, а конкретно информатика [49] .

49

В оригинале: computer science. – Прим. ред.

Вся мотивация поисков идеально надежного фундамента для математики была ошибочной. Это был своего рода джастификационизм. Математику характеризуется тем, как в ней используются доказательства, равно как естественная наука – тем, как в ней используется экспериментальная проверка; но в обоих случаях ни то, ни другое не является целью исследования. Цель математики – понять, то есть объяснить, абстрактные сущности. Доказательство – это главным образом средство для исключения ложных объяснений, а иногда оно также обнаруживает математические истины, требующие объяснения. Но, как и все области, в которых возможен прогресс, математика ищет не случайные истины, а разумные объяснения.

Итак, вот три тесно связанных между собой подхода, в рамках которых законы физики кажутся тонко настроенными: все они могут быть выражены через единый, конечный набор элементарных операций; они единым образом проводят различие между конечными и бесконечными операциями; все их предсказания могут быть вычислены одним физическим объектом, а именно универсальным классическим компьютером (хотя для эффективного моделирования физических процессов, вообще говоря, требуется квантовый компьютер). А все потому, что законы физики поддерживают вычислительную универсальность, заключающуюся в том, что человеческий мозг может предсказывать и объяснять поведение очень далеких от человека объектов, вроде квазаров. И та же самая универсальность позволяет таким математикам, как Гильберт, выстраивать интуитивную основу доказательства и ошибочно полагать, что оно не зависит от физики. Но этой независимости нет: это скорее универсальность в рамках той физики, которая управляет нашим миром. Если бы физика квазаров была похожа на физику отеля «Бесконечность» и зависела от функций, которые мы называем невычислимыми, то мы не смогли бы что-либо предсказать о них (если бы только не смогли построить компьютеры из квазаров или других объектов, опирающихся на соответствующие законы физики). При немного более экзотических, чем эти, законах физики мы бы не смогли ничего объяснить, а значит, не могли бы существовать.

Таким образом, нечто особенное – похоже, бесконечно особенное – содержится в законах физики, какими мы их находим, делающее их исключительно благоприятными для вычислений, предсказаний и объяснений. Физик Юджин Вигнер [50] называл это «непостижимой эффективностью математики в естественных науках». По приведенным мною причинам этого не объяснить одними только антропными рассуждениями. Нужно что-то еще.

Эта проблема, похоже, просто притягивает к себе неразумные объяснения. Так же, как религиозные люди считают, как правило, что непостижимая эффективность математики в науке – заслуга Провидения, некоторые эволюционисты усматривают в ней знак эволюции, а некоторые космологи – результат антропного отбора, а некоторые ученые, занимающиеся информатикой, и программисты видят в небе огромный компьютер. Например, одна из версий этой идеи состоит в том, что все, обычно воспринимаемое нами как действительность, – это просто виртуальная реальность: программа, запущенная на гигантском компьютере, «Великом симуляторе». На первый взгляд кажется, что это перспективный подход к объяснению связей между физикой и вычислениями: возможно, причина выразимости законов физики в компьютерных программах состоит в том, что они и есть компьютерные программы. Быть может, существование вычислительной универсальности в нашем мире – это частный случай способности компьютеров (в данном случае «Великого симулятора») эмулировать другие компьютеры и так далее.

50

Юджин Вигнер (1902–1995) – американский физик и математик венгерского происхождения, лауреат Нобелевской премии по физике

за 1963 год. Знаменит своими работами по симметриям в квантовой механике. – Прим. ред.

Но такое объяснение – это химера. Это бесконечный регресс. Ведь оно ведет к отказу от объяснений в науке. В самой природе вычислительной универсальности заложено, что, если мы и наш мир состояли бы из программного обеспечения, у нас не было бы возможности понять настоящую физику – физику, на основе которой построен «Великий симулятор».

Другой способ поставить вычисления в центр физики и справиться с неоднозначностями антропных рассуждений – это представить, что все возможные компьютерные программы уже запущены. То, что мы воспринимаем как реальность, на самом деле виртуальная реальность, созданная одной или несколькими такими программами. Затем мы определим понятия «обычный» и «необычный» в терминах среднего по всем этим программам, считая их в порядке их длины (количества элементарных операций в каждой из них). Но здесь снова подразумевается, что есть предпочтительное представление о том, что такое «элементарная операция». Поскольку длина и сложность программы полностью зависят от законов физики, эта теория снова требует внешнего мира, в котором работают эти компьютеры, – мира, который был бы для нас непостижимым.

Оба эти подхода терпят неудачу, потому что они пытаются обратить направление реальной объяснительной связи между физикой и вычислениями. Они кажутся возможными лишь потому, что опираются на стандартную ошибку Зенона, но применительно к вычислениям: заблуждение о том, что множество классически вычислимых функций имеет в математике априорно привилегированный статус. Но это не так. Единственное, что как-то выделяет данное множество операций, – это то, что они воплощаются законами физики. Вся суть универсальности теряется, если представить, что вычисления каким-то образом предшествовали физическому миру и создавали его законы. Вычислительная универсальность относится только к компьютерам внутри нашего физического мира, которые связаны друг с другом по универсальным законам физики, к которым мы (таким образом) имеем доступ.

Но как все эти сильные ограничения на то, что мы можем знать и что может быть достигнуто с помощью математики и вычислений, включая существование в математике неразрешимых вопросов, уживаются с принципом, гласящим, что проблемы можно решить?

Проблемы – это конфликты идей. Большая часть математических вопросов, которые существуют абстрактно, никогда появляются в качестве предмета такого конфликта: они никогда не бывают предметом любопытства или центром конфликтующих заблуждений о какой-либо черте мира абстракций. Одним словом, большинство их них просто неинтересны.

Кроме того, напомню, что поиск доказательств не есть цель математики, это просто один из ее методов. Цель ее в том, чтобы понять, а общий метод, как и во всех областях, – составлять гипотезы и критиковать их, исходя из того, насколько разумны они в качестве объяснений. Нельзя понять математическое утверждение, просто доказав, что оно истинно. Вот почему существуют лекции по математике, а не просто списки доказательств. И наоборот, отсутствие доказательства не обязательно означает, что утверждение нельзя понять. Напротив, обычно математик сначала понимает что-то в рассматриваемой абстракции, затем на основе этого понимания выдвигает предположение, как можно было бы доказать истинные утверждения о ней, и лишь потом их доказывает.

Можно доказать математическую теорему, но она так и не вызовет ни у кого интереса. А недоказанная математическая гипотеза может оказаться весьма плодоносной, порождая множество объяснений, даже если она столетиями будет оставаться недоказанной или даже если ее вообще нельзя доказать. Примером такой гипотезы может служить проблема, известная в информатике как «P /= NP». Грубо говоря, она заключается в том, что существуют классы математических вопросов, ответы на которые, будь они откуда-то получены, можно эффективно проверить с помощью универсального (классического) компьютера, но нельзя эффективным образом вычислить. (У «эффективных» вычислений есть техническое определение, которое примерно соответствует тому, что мы имеем в виду под этой фразой на практике.) Практически все исследователи, работающие в области вычислительной теории, убеждены в том, что это предположение верно (что еще раз опровергает идею о том, что математические знания состоят только из доказательств). Хотя его доказательство и неизвестно, существуют достаточно разумные объяснения того, почему следует ожидать, что это утверждение истинно, а объяснений в пользу противоположного исхода нет. (И поэтому считается, что то же самое верно и для квантовых компьютеров.)

Более того, на этой гипотезе строится огромное количество математических знаний одновременно и полезных, и интересных. Сюда входят теоремы вида «если гипотеза верна, то из нее следует вот такой интересный факт». Теорем о том, что было бы, будь гипотеза неверна, меньше, но они тоже представляют интерес.

Математик, изучающий неразрешимую задачу, может доказать, что она неразрешима (и объяснить почему). С точки зрения математика, это будет успех. Хотя решения математической задачи и не будет найдено, решена будет проблема, стоявшая перед математиком. Даже работать над математической задачей без достижения успеха такого рода – уже не то же самое, что потерпеть неудачу в создании знания. Каждая попытка решить математическую задачу и неудача в этом всегда приводит к теореме (и обычно также к объяснению) о том, почему этот подход к решению не срабатывает.

Поделиться с друзьями: