Невидимый современник
Шрифт:
И самое главное: чтобы клетка перестала нормально работать, вовсе не обязательно попадать в какой-то вполне определенный ген. Для этого достаточно повредить любой ген. Вероятность изменить какой-нибудь вполне определенный ген, облучая клетку дозой в несколько сотен рентген, исчезающе мала. Но клетка содержит очень много разных генов, и поэтому вероятность изменить любой ген оказывается не такой уж маленькой величиной. Да, впрочем, мы уже знаем об этом: сравнительно невысокие дозы вызывают мутации во вполне заметном проценте клеток.
Благодаря тому, что каждый ген играет важную роль, а каждая клетка содержит очень большое число
Но и мутации в остальных клетках не всегда безразличны для организма. Ведь некоторые из них приводят к тому, что клетка приобретает злокачественные свойства и дает начало раковой опухоли. А накопление в отдельных клетках разных мутаций, как думают, может служить причиной преждевременного старения. Во всех этих случаях из-за той роли, которую играют гены в живых организмах, мутации, то есть ничтожные изменения, молекул, усиливаются до изменения целого огромного организма. Именно поэтому энергия, которая нагреет стакан воды лишь на один градус, приводит к столь драматическим биологическим эффектам.
Живые клетки размножаются путем деления, а каждому делению предшествует удвоение числа хромосом. В дочерние клетки попадают совершенно одинаковые наборы хромосом. Процесс этот очень важный, и для его осуществления в клетке имеется тончайший прецизионный механизм. Во время деления клетки в ней образуется так называемое веретено деления. Это структура из сократимых нитей, действительно имеющая форму веретена. На определенной стадии все хромосомы, похожие в этот период на довольно короткие палочки (в результате сильной спирализации), располагаются в одной плоскости, перпендикулярной оси веретена. Каждая хромосома расщепляется вдоль. Генетический материал для обеих дочерних клеток готов. Но как правильно распределить его?
Для этого и существует веретено. В каждой хромосоме есть одна особая точка, так называемая центромера. Здесь и присоединяются тянущие нити веретена. Они сокращаются, растягивая хромосомы к двум полюсам клетки. В результате в каждую из дочерних клеток попадает нормальное число хромосом, что является необходимым условием ее существования. Отсюда ясно большое значение того факта, что у каждой хромосомы по одной и только одной центромере.
А теперь вспомним о хромосомных аберрациях. Простейший тип аберраций — фрагменты. Хромосома разваливается на два куска, и один из фрагментов (его называют ацентрическим) будет лишен центромеры. Следовательно, во время деления клетки к нему не сможет присоединиться нить веретена, и он не войдет ни в одно из формирующих ядер. Этот фрагмент обречен: довольно быстро он растворится в цитоплазме под действием ферментов. А клетка потеряет часть генетического материала, причем не один какой-нибудь ген, а большое число генов, которые были в ацентрическом фрагменте.
Фрагмент, сохранивший центромеру (центрический), благополучно попадает в ядро одной из дочерних клеток. Через некоторое время ей приходит время делиться. Расщепляются хромосомы, в том числе и этот фрагмент. Получается два центрических фрагмента. Но концы их не вполне нормальны и могут соединиться друг с другом. Получается хромосома с двумя центромерами. В этом тоже нет ничего хорошего. К одной и той же хромосоме присоединяются две нити и начинают растягивать ее к двум разным полюсам клетки. Получается мостик между двумя ядрами, препятствующий нормальному делению клетки. Чаще всего он рвется, и в каждое из дочерних ядер попадает по центрическому фрагменту. А в новом делении снова начинается тот же цикл. Разрывы моста происходят случайным образом, и с каждым делением все больше и больше нарушается генный баланс.
И фрагменты и мосты, как правило, гибельны для клетки. В обоих случаях меняется генный баланс: вместо того чтобы содержать по два экземпляра каждого гена, клетка имеет часть генов в одинарном или в тройном количестве. И то и другое, как правило, неблагоприятно
сказывается на жизнеспособности клеток.Но фрагментация — только один из многих типов хромосомных мутаций. Часть фрагментов вновь соединяется в иной последовательности, и получаются разнообразные обмены. Их можно разделить на три группы. Прежде всего в результате обмена могут получиться хромосомы, имеющие две центромеры или лишенные центромеры. Судьба их близка к той, что была только что описана. Могут в результате обмена получиться новые хромосомы, у которых с точки зрения микромеханики все в порядке: каждая имеет по одной центромере. Такие обмены могут быть двух типов: либо изменяется распределение генов внутри одной хромосомы, либо происходит перераспределение генов между хромосомами. В обоих случаях клетка сохраняет полную жизнеспособность, но такие мутации могут сказываться на потомстве. В первом случае при скрещивании с нормальными формами подавляется кроссинговер (что не так уж существенно), а во втором значительная часть потомства оказывается нежизнеспособной. Это происходит потому, что в зародыше часть генов оказывается в ненормальном числе. Таким образом, организмы с подобными хромосомными мутациями оказываются частично стерильными.
Итак, с биологической эффективностью радиации вопрос прояснился. Разгадка парадокса связана с уникальностью генетических структур клетки. Единственное, что к этому нужно добавить: генетические поражения, конечно, не единственная причина биологического действия радиации, хотя наиболее изученная и важная. Эту истину не мешает повторить несколько раз, ибо ничто так не вредно в науке, как чрезмерные крайности. Преувеличение значения генетики не менее опасно, чем ее отрицание.
Остается ответить на второй из главных вопросов радиобиологии: с чем связаны различия в радиочувствительности клеток и организмов? Строго говоря, это даже не один вопрос, так как причины различий по радиочувствительности между человеком и амебой, между твердой и мягкой пшеницей, между одинаковыми клетками на разных стадиях их жизненного цикла скорее всего не одни и те же.
Различия между живыми организмами, находящимися в очень далеком родстве, и между их клетками многообразны. Очень уж по-разному организованы неклеточные, одноклеточные и многоклеточные формы жизни, животные и растения. О причинах их различий по чувствительности высказывали разные соображения. И, вероятно, каждый был в какой-то степени прав, но никто не был прав до конца. Мы займемся более простыми вопросами: различиями в радиочувствительности у близких организмов и ее изменением под влиянием сопутствующих факторов и условий. В биологическом действии радиации очень большую роль играет поражение хромосом — наследственного аппарата клетки. Поэтому естественно искать причины различий радиочувствительности у близких организмов в различиях их хромосомного набора.
Природа сама дает объект для таких исследований. Этот объект — полиплоидия. Чаще всего клетки содержат по две хромосомы каждого сорта (то есть двойной, или диплоидный, набор), но среди растений встречаются виды, клетки которых содержат по четыре набора (тетраплоиды), по шесть наборов (гексаплоиды) и т. д. Полиплоидия широко распространена в растительном мире. Некоторые группы растений даже образуют так называемые полиплоидные ряды. Например, в роде пшениц встречаются виды с 14, 28 и 42 хромосомами. К диплоидам (с 14 хромосомами) относится ряд диких видов, а также культивируемая кое-где на Кавказе и в Испании пшеница-однозернянка. К тетраплоидам относятся твердые пшеницы, к гексаплоидам — мягкие. Полиплоидные ряды — замечательный объект для изучения влияние числа хромосом на радиочувствительность. И не удивительно, что многие экспериментаторы использовали это в своих опытах.
Опыты на полиплоидах давали результаты, на первый взгляд противоречивые. При вызывании генных мутаций более чувствительными оказывались виды с меньшим числом хромосом, при вызывании хромосомных — с большим. Но этого и следовало ожидать. Генная мутация — изменение свойств одного из генов. Даже у диплоидов далеко не все генные мутации обнаруживают свое действие: им противодействует оставшийся неповрежденным другой такой же ген. А у полиплоидов — три, пять или даже больше нормальных разновидностей того же гена, которые еще надежнее маскируют возникшую мутацию.