Чтение онлайн

ЖАНРЫ

Невидимый современник
Шрифт:

Георгий Артемьевич родился на Кавказе, славящемся своим гостеприимством. Он поддерживает эту добрую славу и всегда рад гостям. Наши двери широко открыты и для студентов-дипломников, и для врачей, и для молодых ученых, желающих повысить квалификацию, овладеть новым методом, провести работу, для которой в других местах нет возможностей. Но среди наших гостей не только молодежь. Очень часто к нам приезжают и крупные ученые из всех стран мира. Они тоже находят для себя много нового.

Недавно наш институт посетила большая группа ученых из США. И институт, и его оборудование, и уровень ведущихся работ произвели на гостей большое впечатление. Естественно, что об этом речь шла и за накрытым столом. Отвечая на комплименты, Георгий Артемьевич упомянул

о том, что бывший недавно у нас крупный немецкий радиолог сказал, что наш институт — крупнейший в Европе. Глава американской делегации вынужден был возразить:

— Я с большим уважением отношусь к нашему коллеге из Германии, но в данном случае я с ним не согласен. Я достаточно много ездил по свету и с полной уверенностью утверждаю: институт профессора Зедгенидзе — первый не только в Европе.

Хлеб наш насущный

Слово «стрихнин» вызывает у вас представление о страшном яде, которым травят волков. Да, это сильный яд. Но далеко не при всех дозах. Если принять слишком много стрихнина, то ничего особенно страшного не произойдет: вещество только вызовет рвоту и само уйдет из организма. А совсем малые дозы даже могут быть полезными. При общем упадке сил врачи прописывают больным тот же стрихнин, правда, в ничтожных количествах — тысячные доли грамма. И эти крупинки делают чудо. Все зависит от дозы.

Еще в прошлом веке два физиолога — Арндт и Шульце сформулировали правило: «Слабые раздражения возбуждают жизнедеятельность, раздражения средней величины подавляют ее, более сильные совсем приостанавливают». На заре радиобиологии ученые думали, что правило Арндта — Шульце распространяется и на биологическое действие радиации.

Они ставили опыты и получали результаты, которые как будто подтверждали общее правило. Вот ученый кладет под микроскоп лист растения, а неподалеку от него помещает кусочек радиоактивного вещества. Живые клетки, из которых построен лист, заполнены жидкой протоплазмой, находящейся в непрерывном движении. Под действием радиации она начинает двигаться быстрее. Радиоактивное вещество пододвигают ближе… клетки получают более высокую дозу… движение замедляется, при еще более высокой дозе совсем останавливается. Все идет по правилам.

Другой ученый облучает семена. Разные партии облучаются в течение разного времени, и оказывается, что семена, которые облучались совсем недолго, прорастают быстрее, чем необлученные. Облучавшиеся дольше — прорастают медленнее, а получившие самые большие дозы — вообще не прорастают. И эти опыты тоже подтверждают правило.

Заговорили о стимулирующем действии малых доз радиации. Но не все. Другие ученые ставили опыты и никакого возбуждения жизненных процессов не получали. Вопрос оставался спорным. Но были и очень горячие сторонники радиостимуляции.

Чешский ученый Стоклаза верил в стимулирующее действие радиации и ставил сотни опытов, чтобы доказать это. Трудно назвать растение, которое Стоклаза не облучал бы в своих опытах. Мало того, он вел наблюдения и в природе. Как раз в Чехословакии есть месторождения радиоактивных веществ. Стоклаза изучал животных и растения из районов с повышенной радиоактивностью и находил, что они лучше развиты, чем в других местах. Вспомнил он и о сказочных богатырях, которые, если верить народным легендам, когда-то жили в здешних горах. Ясное дело, решил Стоклаза, конечно, были богатыри, и появились они именно под влиянием радиоактивности!

Это было давно, в 20-х годах. А что произошло потом? Я стал заниматься радиобиологией в середине 40-х годов, в начале атомного века. Ни в одной из серьезных книг, изданных в то время, мне не пришлось ни слова прочесть о радиостимуляции. Только когда я рылся в запыленных

комплектах старых журналов, мне нет-нет да и попадались странные заголовки: «О раздражающем действии икс-лучей», «О стимулирующем действии радиоактивности».

Ведь это так интересно, да и практически важно! Почему же этим теперь никто не занимается? Я стал обращаться с недоуменными вопросами к своим учителям, и они разъяснили, в чем дело. Причин оказалось две.

Во-первых, за это время уже достаточно изучили причины вредного действия радиации на живые клетки. Мы знаем, что главная причина — повреждение хромосом. Полагать, что слабая степень этого повреждения благотворно повлияет на жизненные процессы, не было ровно никаких оснований.

Во-вторых, опыты, проведенные сторонниками радиостимуляции, не выдерживают никакой критики. Взгляните на растения, растущие на одном поле. Они разные. И не потому, что одно получило больше удобрений, а другое — меньше. Изменчивость — общее свойство всех живых организмов. И если одно растение облучить очень слабой дозой, а другое оставить необлученным, то разница может оказаться и совершенно случайной, не связанной с облучением. А множество опытов ставилось на очень небольшом числе растений. Если бы Стоклаза вместо сотни разных опытов поставил один, но большой и точный, проку было бы больше.

Вот потому-то в 40-х годах почти никто из серьезных радиобиологов в радиостимуляцию не верил. Но сейчас уже 60-е годы, а за двадцать лет многое изменилось.

Атомный век настойчиво ставил новые задачи. Одна из них связана с тем, что среди отходов атомной промышленности есть вещества, которые можно использовать в качестве удобрения, но они слегка загрязнены радиоактивностью. Необходимо ли их «хоронить», что связано с дополнительными затратами, или, если они не вредят урожаю, можно вывозить их на поля? Нужно было узнать, как разные концентрации радиоактивных веществ влияют на прорастание семян, всхожесть и урожай. Такое задание получила лаборатория, где я в то время делал свои первые шаги в науке.

Начали опыты. И не поверили своим глазам. Потому что увидели, что семена, облученные слабыми дозами или намоченные в слаборадиоактивных растворах, прорастали лучше, чем контрольные. Это отнюдь не было повторением экспериментов Стоклазы. Опыты ставились на тысячах семян, во многих повторностях, все варианты находились в строго одинаковых условиях… Но факт оставался фактом: семена прорастали быстрее.

Время шло, и оказывалось, что под влиянием низких доз облучения не только улучшается прорастание, но также ускоряется рост и развитие, повышается урожай…

В чем же дело? Почему этого не знали раньше? Как это увязать с тем, что известно о действии радиации на живую клетку?

Тогда мы вновь обратились к литературе, и более внимательное ее изучение показало, что наряду с совершенно недостоверными опытами существуют и отличные работы, проведенные со всей возможной точностью и показавшие существование радиостимуляции. Причем за самыми убедительными работами не приходилось далеко ехать: они были выполнены у нас на Родине, в Москве и Подмосковье, Лидией Петровной Бреславец и ее сотрудниками. К сожалению, большое количество несолидных статей так скомпрометировало идею радиостимуляции, что на эти работы радиобиологи в свое время не обратили должного внимания.

Противоречий с теорией тоже не было. Ведь действие ионизирующих лучей на клетку не ограничивается повреждением хромосом. Исследование клеток, облученных в условиях радиостимуляции, показало, что малые дозы ускоряют деление клеток, что заметила еще Бреславец. А мне пришлось заниматься этим специально. В результате стало ясно, почему не всегда малые дозы радиации оказывают стимулирующий эффект на рост и развитие.

Ускорение клеточного деления и повреждение хромосом по-разному зависит от таких условий облучения, как жесткость лучей и распределение дозы во времени. Когда эти условия были найдены, стало возможным получить радиостимуляцию всегда, когда это нужно.

Поделиться с друзьями: