Чтение онлайн

ЖАНРЫ

Невидимый современник
Шрифт:

Георгий Артемьевич начал с того, что посетил все крупнейшие радиологические институты мира. В своих путешествиях он не расставался с записной книжкой, куда вносил сведения обо всем самом лучшем, самом современном в радиологии, чего бы оно ни касалось: новых приборов и аппаратов, научных проблем, строительства, организации труда… В этих книжках были и адреса фирм, выпускающих наиболее совершенные аппараты, и статистические данные о результатах применения различных методов лечения и диагностики, и схемы расположения кабинетов, и даже наброски фасонов халатов для медсестер.

Ученый путешествовал не зря. Теперь он мог, закрыв глаза, ясно представить себе будущий институт — институт, который воспримет все лучшее, что известно современной медицинской

науке. Ученый продумал все, начиная с научной тематики и организационной структуры и кончая системой отопления и цветом стен в коридорах. Тогда Георгий Артемьевич обратился в ЦК нашей партии.

Коммунистическая партия и правительство нашей страны горячо поддерживают все, что сулит повышение благосостояния народа, проявляют неустанную заботу о народном здравоохранении. Поскольку строительство нового института отвечало этим задачам, Зедгенидзе получил «добро». 22 августа 1958 года ЦК КПСС принял решение о строительстве института.

Институт, который до тех пор существовал только в голове Зедгенидзе, перешел на бумагу — в чертежи проектировщиков и сметы экономистов. А еще через некоторое время воплотился в кирпич и бетон, стекло и металл.

И вот Институт медицинской радиологии Академии медицинских наук СССР существует.

Неподалеку от Москвы, на самом севере Калужской области стоит город, которого нет на старых картах. Он вырос там, где в 1956 году дала ток первая атомная электростанция. Имя города — Обнинск. Вокруг атомной электростанции начали строить другие научно-исследовательские институты, занимающиеся разными аспектами мирного применения атомной энергии, и появился еще один город-спутник, еще один научный городок, которых теперь немало в нашей стране. Там же находится и наш институт.

Институт настолько обширен, что расположен на двух разных площадках. На одной из них сооружена клиника, а на другой — экспериментальный сектор. В клинику мы с вами не пойдем. Это самостоятельная область, в которой я не специалист, и в своих объяснениях могу что-нибудь напутать.

А экспериментальный сектор — это десять отдельных зданий. В огромном пятиэтажном корпусе сосредоточены главные экспериментальные лаборатории. Почти такое же здание отведено для работ с радиоактивными изотопами. Еще такое же — физико-технический корпус — скрывает за бетонными стенами разнообразные источники излучений. Специальные здания для содержания подопытных животных, для экспериментальных мастерских…

Времена Тарханова, когда для радиобиологических открытий достаточно было взятого напрокат рентгеновского аппарата и простейших физиологических инструментов, давно прошли. В нашем секторе есть, например, электронная счетная машина, несколько электронных микроскопов, установки для поддержания высоких и низких температур и давлений, ультрацентрифуги… Многие приборы снабжены устройствами для автоматической записи результатов измерений. Бок о бок трудятся биологи и физики, врачи и инженеры…

А зачем все это нужно? После того, что уже сказано, вряд ли этот вопрос требует подробного ответа. Мы знаем, что ионизирующие лучи оказывают на живой организм, на все его клетки, сильный эффект, что радиочувствительность клеток различна, что радиация способна проникать внутрь вещества на любую глубину. На этом основаны многообразные применения ионизирующих лучей с целью лечения: убить больные клетки (в первую очередь раковые) — вот в чем задача. А чтобы усилить эффект облучения больных клеток и ослабить его действие на остальной организм, нужно знать все о лучах и об их действии на организм.

Это основа. А радиотерапия — целая наука, о которой можно либо лишь упомянуть, либо говорить специально. Но я не могу удержаться от того, чтобы не рассказать хотя бы об одном из новейших методов, разрабатываемых в нашем институте. Вопрос только в том, что выбрать.

Естественно

взять последнее, о чем слышал. Как раз на последнем заседании ученого совета один из моих коллег — Юрий Сергеевич Рябухин, физик, ставший биологом, докладывал об успехах и перспективах своей лаборатории. С особым увлечением он говорил о нейтронно-захватной терапии. Попробую и я кратко рассказать об этом.

Нейтроны не имеют заряда и потому, проходя через вещество, ионизаций не производят. Ионизации при нейтронном облучении вызываются вторичными частицами. При облучении быстрыми нейтронами — это ядра отдачи (главным образом водородные, то есть протоны), при облучении медленными — продукты ядерных реакций, происходящих при захвате нейтронов ядрами. А разные вещества захватывают медленные нейтроны очень по-разному. Вероятность захвата зависит от особенности строения атомного ядра.

Ученым пришла в голову остроумная мысль: если, скажем, опухоль насытить атомами, которые особенно энергично захватывают нейтроны, и затем облучить, то нейтроны, проходя, почти не задерживаясь, через нормальные ткани, будут интенсивно поглощаться в опухоли, образуя там ионизирующие частицы. В результате можно дать на опухоль достаточно высокую дозу, почти не затрагивая окружающие ткани.

Эта звучащая довольно фантастично идея вполне осуществима, хотя достаточно трудна. Нужно найти (или синтезировать) соединения, которые усиленно накапливались бы в определенных органах и вместе с тем содержали элементы, активно захватывающие медленные нейтроны. Здесь требуется совместная работа физиологов, фармакологов, химиков, физиков-ядерников, физиков-дозиметристов и, конечно, врачей. Совершенно ясно, что рядовой лаборатории подобная работа не под силу. А для института вроде нашего, где под одной крышей собраны ученые самых разных специальностей, она вполне доступна.

Ионизирующие лучи применяются в медицине в двух направлениях: для лечения (о чем мы только что говорили) и для диагностики. Диагностика основана не на биологическом действии радиации, а на проникающей способности ионизирующих лучей и потому непосредственно не связана с радиобиологией — темой настоящей книги. Однако придется сказать несколько слов и о радиодиагностике, чтобы создать более полное представление о применении ионизирующих лучей в медицине.

Всем известное просвечивание с помощью рентгеновых лучей — только один из многих методов радиодиагностики. Когда-то он был единственным, теперь его дополняет целый ряд других. Расскажу о радиоизотопной диагностике, которая, подобно нейтроннозахватной терапии, доступна пока лишь немногим институтам.

В клинику поступает больной с подозрением на опухоль щитовидной железы. Прежде всего нужно узнать основное: есть опухоль или ее нет и причина болезни иная. Снаружи опухоль не видно, просвечивание тоже мало помогает, так как щитовидная железа состоит из мягкой ткани, плохо поглощающей лучи. Но здесь врачу приходит на помощь то, что щитовидная железа жадно поглощает йод. Больной получает небольшое количество радиоактивного йода, и через некоторое время его подводят к прибору, регистрирующему ионизирующие частицы. Чем больше размеры железы, тем больше она поглощает йода, тем больше частиц отсчитывает прибор. А опухоль практически не поглощает йода. Поэтому врачу все становится ясно: просто ли увеличилась железа или дело более серьезное. А процедура практически безопасна. Для нее требуется ничтожное количество йода, и из организма он исчезает довольно быстро.

Мало того, если опухоль есть, то специальные приборы помогают установить ее размеры, форму, расположение. Опухоль заслоняет от прибора здоровую ткань, и он в соответствующих местах регистрирует меньше радиоактивных сигналов. Такое исследование сильно облегчает дальнейшее лечение.

Радиодиагностика основана не на радиобиологии, но без данных радиобиологии и она обойтись не может. Ведь для применения диагностических методов нужно знать, какое действие оказывают на разные ткани те или иные лучи, чтобы подобрать безопасные дозировки и режимы.

Поделиться с друзьями: