Чтение онлайн

ЖАНРЫ

Новый мир. № 8, 2002
Шрифт:

3. Далее следует заключительный этап, связанный с деградацией ядерной ДНК (она распадается на фрагменты вплоть до олигонуклеотидов длиной порядка 180 пар). В конечном итоге клетка подвергается фрагментации, теряет целостность и уничтожается микрофагами или макрофагами, то есть становится своего рода питательным субстратом для других клеток. При этом фагоцитоз не сопровождается воспалительным процессом, как это бывает при некрозе.

Интересно отметить, что окончательное решение (образно говоря, где поставить запятую в фразе «казнить нельзя помиловать») принимается в прямом смысле «большинством голосов». Все зависит от соотношения концентрации белков, одни из которых «голосуют» за смертный приговор (это белки из семейства Bax, обладающие апоптозной активностью), в то время как другие готовы «даровать жизнь» (белки Bcl-2). Причина в том, что белки Bcl-2 могут образовывать димерные комплексы с белками Bax, тем самым нейтрализуя их, то есть предотвращая

развертывание апоптозного сценария.

Следует сказать, что апоптоз — отнюдь не экзотический процесс. Скорее наоборот. Он — явление универсальное, свойственное всему живому. В настоящее время открыты и интенсивно исследуются: митоптоз — программированная гибель митохондрий (одного из органоидов клетки), апоптоз — программированная гибель целых клеток, органоптоз — программированная гибель органов и, наконец, феноптоз — программированная гибель особи.

Каковы же биологические функции апоптоза? Если кратко суммировать, то получим следующее:

обеспечение органогенеза и дифференцировки клеток;

поддержание тканевого гомеостаза;

защита от патогенных факторов.

Понятно, что функциональное значение этого механизма является жизненно важным как для клетки, так и для организма в целом. Наиболее ярким примером того, как путем апоптоза поддерживается точная регуляция количества клеток в организме, может служить червячок Caenorhabditis elegans. У него в процессе индивидуального развития образуется 1076 клеток, но далее ровно 131 из них обязательно гибнет, так что в конечном итоге его крохотное, размером не более одного миллиметра тельце будет состоять из 945 клеток, ни одной больше или меньше. Аналогичные процессы происходят также у животных и человека при формировании в эмбриогенезе различных органов, включая нервную систему. При этом избыточные клетки решительно подвергаются апоптозу. И это вполне понятно: существование лишних клеток не принесло бы организму ничего хорошего. Поэтому часть из них в самом прямом смысле приносит себя в жертву ради общего блага. В этом состоит высокий биологический смысл апоптоза.

А вот нарушение процесса апоптоза влечет за собой многочисленные неприятные последствия, часто — с летальным исходом. Если говорить о человеке, то у него появляются злокачественные новообразования, различные аутоиммунные болезни (например, системная красная волчанка), нейродегенеративные заболевания (такие, как синдром Альцгеймера, болезнь Паркинсона), дефекты развития, а также прогрессируют вирусные инфекции. Кстати, многие вирусы, проникая в клетку, стараются в первую очередь нарушить механизм ее апоптоза, чтобы не быть уничтоженными вместе с зараженной ими клеткой-хозяином, которая ради блага организма стремится самоликвидироваться.

Наиболее глубокие исследования апоптоза принадлежат академику Владимиру Скулачеву. Он показал, что в клеточных реакциях атомы кислорода, которым дышит за редким исключением все живое, превращаются в радикалы гидроксила, являющиеся чрезвычайно активным окислителем. Эта ядовитая форма кислорода выступает как еще одна из причин апоптоза, то есть служит «орудием самоубийства». Эту систему самоликвидации Скулачев назвал «самурайским законом биологии». И выполняться этот закон начинает, когда в клетке накапливается слишком много генетических повреждений либо в «бездомных» клетках, которые покинули свою ткань и начали бессмысленное блуждание по организму. Следовательно, геном остается относительно неизменным в течение тысячелетий именно благодаря тому, что некоторые клетки делают себе «харакири». Однако исследованиями было показано, что не только отдельные клетки, но даже и органы могут ступить на путь самоликвидации. Ядовитые формы кислорода приводят к тому, что в процессе эмбриогенеза исчезают ставшие ненужными некоторые эмбриональные структуры, а также личиночные органы (например, хвост у лягушачьего головастика, наружные жабры и т. д.).

Дальнейшие исследования этого феномена дают основанияпредполагать, что генетическая программа апоптоза универсальна для всего живого, от бактерий до человека, поскольку были найдены многочисленные гомологичные гены, связанные с реализацией апоптозного сценария. Таким образом, программа самоубийства клетки, записанная в ее генах, по-видимому, является столь же древней (и при этом весьма консервативной), как и сам феномен жизни. Поистине этот факт достоин удивления.

Однако не менее интересным представляется следующее обстоятельство: и механизм апоптоза, и механизм деления клетки (митоз) регулируются одними и теми же белками. «Таким образом, системы регуляции клеточного деления и клеточной смерти оказываются тесно переплетенными между собой», — пишет известный вирусолог, профессор МГУ, член-корреспондент РАН В. И. Агол [60] . Жизнь и смерть оказываются двумя неразрывными процессами, один из которых (жизнь) не может нормально функционировать без другого (смерти). Самое большое, с нашей точки зрения,

зло природного существования — смерть — вплетена в ткань жизни.

60

Агол В. И. Генетически запрограммированная смерть клетки. http://science.rambler.ru, стр. 4.

Апоптоз помогает организму освобождаться от избыточных, больных и состарившихся клеток, которые перестают эффективно выполнять свои функции, а также от клеток, в структуре генетического аппарата которых произошли столь значительные изменения, что их существование несет угрозу нормальной работе и жизни всего организма. Нарушение процесса программированной гибели клеток таит в себе, как было сказано, серьезные патологии.

Вывод, который может быть сделан, как ни странно он прозвучит, таков: генетически запрограммированная смерть — явление, жизненно необходимое живому. Возможно, отношения даже в клеточном сообществе лишний раз иллюстрируют мысль о том, что на свете «нет больше той любви, как если кто положит душу свою за друзей своих» (Иоанн, 15: 13).

Как считает Скулачев, при отключении апоптоза человек перестает стареть. «Физиологически бессмертный (или почти бессмертный) человек, вероятно, будет соответствовать зрелому возрасту» [61] . Но люди не обретут при этом бессмертия, ибо они будут умирать от накопления «поломок» в их организмах. Деградирующего развития (а следовательно, и смерти) нет лишь в вечности. Но, как веруют христиане, вечность наступит, когда кончится время, или, что то же самое, когда будет обретена полнота времен, то есть в Царствии Небесном.

61

Скулачев В. Рецепты молодости от современной науки. — «Наука и жизнь», 2001, № 12, стр. 32.

И все же почему даже при столь жестком генетически запрограммированном контроле за качеством клеток, входящих в состав живого организма, его участью все же является рабство тлению — смерть? Каковы биологические причины этого? И столь ли они неотвратимы?

Если говорить о человеке, то необходимо обратиться к исследованиям в области геронтологии. Наука эта за время своего развития накопила немало любопытных фактов, требующих внимательного анализа и осмысления.

Известно, что формирование клеток, органов, а также их функционирование — все это происходит по определенной программе, записанной в молекулах ДНК. Полное прочтение ДНК человека, завершившееся в 2001 году, вероятно, принесет немало открытий, в том числе и по проблеме старения и смерти. Однако уже сейчас можно составить достаточно отчетливую картину.

Геронтологи обратили внимание на то обстоятельство, что нормальная (или физиологическая) температура тела человека, составляющая 37 °C, является критической для существования ДНК. Дело в том, что при этой температуре химические связи в молекуле ДНК оказываются весьма нестабильными (наиболее слабой оказывается гликозидная связь между азотистым основанием и углеводом). Эта нестабильность приводит к возникновению разного рода спонтанных повреждений ДНК (таких, как выщепление азотистых оснований, индукция однонитевых разрывов, дезаминирование и метилирование, сшивки оснований и проч.), скорость накопления которых в целом равна 5 ћ 103 в час. Учитывая время жизни клетки в организме человека, а также общее количество клеток, получаются просто астрономические цифры спонтанных повреждений ДНК, с которыми организм вынужден как-то сосуществовать. Если же сюда прибавить еще и повреждения, вызываемые фоновым излучением, не говоря о прочих неблагоприятных средовых мутагенных факторах, то возникает закономерный вопрос о том, каким образом клетки нашего тела живут при таком физиологически неоптимальном режиме, сохраняя свою исходную генетическую структуру.

Конечно, в клетке существует генетически запрограммированные системы залечивания повреждений ДНК — так называемые репарации. Именно благодаря их работе значительная часть спонтанных и индуцированных повреждений устраняется. И все же приходится признать, что организм наш устроен как-то странно: получается, что он сам создает себе проблемы и сам же ищет пути выхода из них. Классическое представление о генах как о чем-то стабильном и неизменном теперь необходимо признать устаревшим. Можно утверждать, что ДНК, задача которой — хранение генетической информации, определяющей биологическую стабильность организма как представителя своего вида, на самом деле находится в динамическом постоянстве. В ней с высокой частотой возникают спонтанные повреждения (мутации), которые отслеживаются и залечиваются репарационными системами. Однако далеко не все и не со стопроцентной точностью. Неотрепарированные повреждения, или мутации, неотвратимо накапливаются, вызывая изменения в структуре и функциях как отдельных клеток, так и организма в целом.

Поделиться с друзьями: