Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
Жирным шрифтом выделены диагональные десятичные знаки. В данном случае эти цифры равны:
1, 4, 1, 0, 0, 3, 1, 4, 8, 5, 1…..
Метод диагонального процесса состоит в построении действительного числа (в интервале от 0 до 1), чье десятичное разложение (после десятичной запятой) отличается в каждом разряде от соответствующего числа приведенной выше последовательности. Для определенности положим, что цифра данного разряда равна 1, если цифра соответствующего разряда на диагонали отлична от 1, и равна 2, если цифра на диагонали равна 1. Таким образом, в рассматриваемом случае получается такое действительное число:
0,21211121112…
Это действительное число не может быть в списке, поскольку оно отличается от первого числа в первом десятичном разряде (после десятичной запятой), от второго числа — во втором разряде, от третьего числа — в третьем разряде и т. д. Таким образом, мы приходим к противоречию, поскольку полагали, что рассматриваемый список содержит все действительные числа в интервале от 0 до 1.
Число действительных чисел равно бесконечному числу, обозначаемому С. (Здесь Сявляется сокращенным обозначением слова континуум — другого названия системы действительных чисел.) Может возникнуть вопрос, почему мы не обозначаем это число, например, N 1. Символ N 1на самом деле обозначает следующее за N 0бесконечное число, а вопрос о том, верно ли утверждение С= N 1— это так называемая континуум-гипотеза , — представляет собой знаменитую и пока что нерешенную проблему.
При этом следует отметить, что множество вычислимыхчисел счетно. Пересчитать их можно просто перечислив по порядку машины Тьюринга, порождающие действительные числа (то есть машины, последовательно порождающие цифры каждого разряда действительных чисел). При этом можно исключить из списка любую машину Тьюринга, порождающую действительное число, которое уже встречалось ранее в списке. Поскольку множество машин Тьюринга счетно, то, следовательно, счетным также должно быть и множество вычислимых действительных чисел. Почему же нельзя применить диагональный процесс к этому списку с тем, чтобы породить новое не включенное в список вычислимое число? Ответ состоит в том, что в общем случае невозможно с помощью вычислений решить, следует ли ту или иную машину Тьюринга включать в список, поскольку для этого мы должны были бы иметь возможность решить проблему остановки. Некоторые машины Тьюринга, начав порождение цифр действительного числа, могут зависнуть и оказаться уже не в состоянии выдать очередную цифру (поскольку они «не остановятся»). Не существует вычислимого способа, который позволил бы решить, какие именно машины Тьюринга зависнут таким образом. Это, в сущности, и есть проблема остановки. Значит, хотя метод диагонального процесса и породит некоторое действительное число, последнее не будет вычислимым. На самом деле, это рассуждение может использоваться для доказательствасуществования невычислимых чисел. Именно в этом ключе выдержано описанное в предыдущей главе тьюринговское доказательство существования классов алгоритмически неразрешимых задач. Другие области применения диагонального процесса будут рассмотрены дальше.
«Действительность» действительных чисел
Если отвлечься от понятия вычислимости, то действительные числа называются «действительными», потому что они, как представляется, дают величины, необходимые для измерения расстояний, углов, времени, энергии, температуры и многих других геометрических и физических параметров. Однако связь абстрактно определенных «действительных» чисел с физическими величинами не так проста, как может показаться. Действительные числа следует рассматривать скорее как некоторую математическую идеализацию, чем как реальную меру физически объективных величин. Система действительных чисел обладает, например, таким свойством, что между любыми двумя действительными числами (вне зависимости от их близости) существует третье действительное число. При этом совершенно не ясно, можно ли обоснованно утверждать то же самое о физических расстояниях или промежутках времени. Если мы продолжим дробить физическое расстояние между двумя точками, то мы в конце концов достигнем масштабов столь малых, что само понятие расстояния в обычном его смысле станет бессмысленным. Предполагается, что это действительно имеет место на масштабах, характерных для квантовой теории гравитации, которые в 10 20раз [61] меньше размеров субатомных частиц. Но чтобы отобразить действительные числа нам потребуется дойти до сколь угодно более мелких масштабов, которые, например, в 10 200, 10 2000или даже в
61
Напомним, что 10 20означает число 100 000000000000000 000, то есть единицу с двадцатью нулями.
раз меньше размеров частиц. И совершенно не ясно, есть ли какой бы то ни было физический смысл у столь абсурдно малых масштабов. То же самое можно сказать и в отношении столь же малых интервалов времени.
Система действительных чисел выбрана в физике в силу ее математическойполезности, простоты и изящества, а также поскольку она согласуется на очень широком интервале масштабов с физическими понятиями пространства и времени. Она выбрана не потому, что мы будто бы знаем, что она согласуется с упомянутыми физическими величинами на всех масштабах. Такое согласие вполне может не иметь места на очень малых пространственных
и временных масштабах. Обычные расстояния измеряются при помощи линейки, но линейка оказывается «зернистой» при переходе к масштабам образующих ее атомов. Само по себе это не мешает нам продолжать использовать действительные числа подходящим образом, но измерение меньших расстояний требует уже гораздо большей изобретательности. По крайней мере, мы должны быть готовы предположить, что на очень-очень малых масштабах могут встречаться принципиальные трудности с расстояниями. Как оказывается, природа оказалась к нам на удивление благосклонна, сделав те самые действительные числа, которые мы привыкли повседневно применять для описания предметов на макромасштабах, пригодными для описания расстояний гораздо меньших атомных — по крайней мере, на масштабах, равных одной сотой «классического» диаметра элементарной частицы — такой, как электрон или протон, — и, по-видимому, вплоть до «масштабов квантовой теории гравитации», что на двадцать порядков меньше размеров таких частиц! Это пример исключительно сильной экстраполяции нашего опыта. Сфера применимости привычного понятия расстояния, измеряемого действительными числами, по-видимому, простирается до самых далеких квазаров и еще дальше. Общий диапазон измеримых расстояний составляет 10 42, а может быть, 10 60или даже больше. Кстати, сомнения в правомерности использования системы действительных чисел высказывались не так уж часто. Почему же мы так уверены в том, что эти числа дают точное описание физических явлений, хотя реально об их применимости мы знаем лишь в весьма ограниченном диапазоне масштабов? Должно быть, эта уверенность — возможно, неверная — основывается на (правда, не очень часто признаваемых) логическом изяществе, внутренней согласованности и математической мощи системы действительных чисел в сочетании с верой в глубинную математическую гармонию природы.Комплексные числа
Оказывается, что действительные числа — это не единственная математически мощная и изящная система чисел. Система действительных чисел все же не лишена некоторых неудобств. Например, квадратные корни можно извлекать только из положительных чисел (или нуля), но никак не из отрицательных чисел. С математической точки зрения — и отвлекаясь пока что от вопроса о непосредственной связи с физическом миром — было бы очень удобно иметь возможность извлекать квадратные корни как из положительных, так и из отрицательных чисел. Давайте постулируем существование, или попросту «изобретем» квадратный корень из числа – 1 . Обозначим его буквой i . Тогда мы имеем:
i 2= – 1 .
Величина i , конечно же, не может быть действительным числом, поскольку произведение действительного числа на самого себя всегда положительно (или равно нулю, если само число равно нулю). Поэтому числа, квадраты которых отрицательны, обычно называют мнимыми . Следует, однако, отметить, что эти «мнимые» числа не менее реальны, чем ставшие уже привычными «действительные» числа. Как я уже отмечал выше, связь таких «действительных» чисел с физическойреальностью далеко не столь непосредственна и убедительна, как может показаться на первый взгляд, и основана на математической идеализации о допустимости бесконечного уточнения, которая не имеет ясного априорногообоснования в природе.
Имея квадратный корень из – 1 , можно без особого труда получить квадратные корни для всех действительных чисел. Если а является положительным действительным числом, то величина iх aесть квадратный корень из отрицательного действительного числа — а . (У этого числа есть еще другой квадратный корень, а именно — i х а .) Ну, а что же можно сказать о самом числе i ? Есть ли у него квадратный корень? Разумеется есть, поскольку, как легко проверить, величина
1 + i / 2
(равно как и та же величина, взятая с отрицательным знаком), будучи возведена в квадрат, равна i . А у этой величины, в свою очередь, есть квадратный корень? Ответ опять положительный: квадрат числа
Обратите внимание, что при образовании такого рода величин мы позволили себе складывать действительные и мнимые числа, а также умножать наши числа на произвольные действительные числа (или делить их на произвольные ненулевые действительные числа, а это то же самое, что умножать их на обратные величины). Получаемые таким образом объекты называются комплексными числами . Комплексное число это число вида: а + ib , где а и b — это действительные числа, называемые, соответственно, действительной и мнимой частью комплексного числа. Правила сложения и умножения двух таких чисел вытекают из обычных правил (школьной) алгебры с одним дополнительным правилом i 2 = — 1 :