Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
Однако на самом деле, когда говорят: «Ньютонианский бильярдный мир не вычислим», имеют в виду совсем другое. Та модель, которую я сравниваю с ньютонианским бильярдным миром — а именно, «бильярдный компьютер» Фредкина — Тоффоли — действует как вычислительный алгоритм. В конечном счете, это и было квинтэссенцией идеи Фредкина и Тоффоли — что их модель должна вести себя как (универсальный) компьютер! Вопрос, который я пытаюсь сейчас прояснить, сводится к следующему: можно ли представить себе, что человеческий мозг, используя некоторые подходящие «невычислимые» физические законы, работает в определенном смысле «лучше», чем машина Тьюринга? Бесполезно пытаться использовать что-нибудь вроде следующего утверждения:
«Если шарик А никогда не сталкивается с шариком В , то ответ на Ваш вопрос будет: „нет“».
Чтобы окончательно удостовериться в том, что шарик А действительно никогда не сталкивается с шариком В , пришлось бы прождать вечность! Разумеется, машины Тьюринга ведут себяименно так.
На самом деле, существуют, по-видимому, достаточно весомые указания в пользу своего рода вычислимостиньютонианского бильярдного мира (по крайней мере, если оставить в стороне проблему множественных столкновений). Способ, которым мы пользуемся для того, чтобы рассчитать
Но в то же время можно сказать и обратное: что в некотором ( практическом) смысле этот мир «невычислим», поскольку точность, с которой могут быть известныначальные данные, всегда ограничена. Действительно, такого рода задачам всегда присуща некоторая (и весьма значительная) «нестабильность». Очень небольшое изменение в начальных условиях может привести к возникновению чудовищных изменений в конечном состоянии. (Всякий, кто пытался загнать в лузу бильярдный шар, стремясь ударить его промежуточным шаром, поймет, что я имею в виду!) Сказанное становится очевидным, когда происходят (последовательные) столкновения, но такие неустойчивости в поведении могут встречаться и в случае действия ньютоновского тяготения на расстоянии (если гравитирующих тел больше двух). Для обозначения этого типа неустойчивости часто используется термин «хаос», или «хаотическое поведение». Например, хаотическое поведение важно, когда речь заходит о погоде. Хотя ньютоновские уравнения, управляющие стихиями, хорошо изучены, долговременный прогноз погоды печально известен своей ненадежностью!
Все это не похоже на тот тип «невычислимости», который можно было бы каким-то образом «использовать». Невычислимость в данном случае обусловлена просто тем, что из-за существования предела точности, с которой может быть известно начальное состояние, будущее состояние в принципе не поддается точному расчету на основании известных начальных условий. На самом деле, в этом случае к будущему поведению системы примешивается случайный элемент— и только. Если же работа мозга все-таки опирается на полезныеневычислимые составляющие физических законов, то последние должны быть совершенно другими — и более конструктивными — по своей природе. Поэтому я не буду называть «хаотическое» поведение такого рода «невычислимостью», предпочитая использовать термин «непредсказуемость». Наличие непредсказуемости — весьма общее явление для тех детерминистских законов, которые, как мы вскоре убедимся, действительно возникают в (классической) физике. Но мы скорее уж предпочтем минимизироватьнепредсказуемость, чем «использовать» ее в конструкции мыслящей машины!
Обсуждая в общем и целом вопросы вычислимости и непредсказуемости, нам будет полезно принять более широкую, чем прежде, точку зрения на природу физических законов. Это позволит рассматривать не только схему ньютоновской механики, но и более поздние теории, пришедшие ей на смену. И сперва нам стоит окинуть беглым взглядом замечательную формулировку законов механики, предложенную Гамильтоном.
Гамильтонова механика
Своими успехами ньютоновская механика обязана не только своей способности исключительно точно описывать физический мир, но и обилию порожденных ею математических теорий. Замечательно, что все ПРЕВОСХОДНЫЕ теории природы оказались весьма щедрыми источниками математических идей. В этом кроется глубокая и прекрасная тайна: все наиболее точные теории в то же время необычайно плодотворны и с точки зрения математики. Не подлежит сомнению, что это свидетельствует о каких-то глубоких связях между реальным окружающим нас миром и платоновским миром математики. (Далее, (в главе 10, «Взгляд на физическую реальность») я постараюсь еще раз вернуться к этому вопросу.) Возможно, ньютоновская механика в этом отношении не имеет себе равных, так как ее рождение привело к возникновению дифференциального и интегрального исчисления. Кроме того, специфическая ньютонианская схема дала рождение массе замечательных математических идей, составляющих классическую механику. Имена многих великих математиков XVIII и XIX веков связаны с развитием этой науки: Эйлер, Лагранж, Лаплас, Лиувилль, Пуассон, Якоби, Остроградский, Гамильтон. То, что принято называть «гамильтоновой теорией» [112] включает в себя многое из проделанной ими работы. Сейчас мы вкратце коснемся Общих положений этой теории. Разносторонний и самобытный ирландский математик Уильям Роуан Гамильтон (1805–1865), автор гамильтоновых циклов (обсуждаемых в гл.4, подгл. «Теория сложности»), придал этой теории такую форму, которая особо подчеркивала аналогию с распространением волн. Это указание на существование взаимосвязи между волной и частицей (равно как и форма самих уравнений Гамильтона) сыграло важную роль в последующем развитии квантовой механики. К этой стороне дела я еще вернусь в следующей главе.
112
Уравнения, написанные Гамильтоном, — хотя, возможно, не вполне отражавшие его собственную точку зрения — были известны великому итало-французскому математику Жозефу Л.Лагранжу A736-1813) еще за 24 года до Гамильтона. Не менее важным достижением стала примерно в то же время формулировка механики в форме уравнений Эйлера — Лагранжа, согласно которым законы Ньютона можно рассматривать как производные одного основополагающего принципа — принципа стационарного действия (П. Л. М. де Мопертюи.) Обладая огромным теоретическим значением, уравнения Эйлера — Лагранжа имеют к тому же и немалую практическую ценность как мощный инструмент для вычислений.
В рамках гамильтоновой теории впервые появились «переменные» для описания физической системы. До Гамильтона положениячастиц считались первичными, а скорости считались просто быстротой изменения положения частиц во времени. Напомним, что для задания начального состояния ньютоновской системы нам необходимы положения и скорости всех частиц — только тогда мы можем определить последующее поведение
системы. В рамках гамильтоновой формулировки необходимо выбиратьимпульсы, а не скорости частиц. (В гл.5, подгл. «Динамика Галилея и Ньютона» мы отметили, что импульс частицы есть не что иное, как произведение ее скорости на массу.) Само по себе это нововведение может показаться несущественным, но важно здесь другое: положение и импульс каждой частицы в гамильтоновой формулировке надлежит рассматривать как независимые, более или менее равноправные величины. Тем самым, используя гамильтонову формулировку, мы «делаем вид», что импульсы различных частиц не имеют никакого отношения к быстроте изменения переменных, описывающих их относительное положение, а представляют собой отдельный набор переменных — и, как следствие, мы можем считать импульсы совершенно независимыми от изменения положений движущихся частиц. В гамильтоновой формулировке мы располагаем двумя системами уравнений: одна из них говорит нам о том, как изменяются во времени импульсыразличных частиц, другая — о том, как изменяются во времени положениячастиц. И в том, и в другом случае быстрота изменений определяется различными положениями и импульсами в рассматриваемый момент времени.Грубо говоря, первая система гамильтоновых уравнений выражает второй, самый важный закон движения Ньютона (быстрота изменения импульса = силе), тогда как вторая система уравнений Гамильтона говорит нам о том, чему равны импульсы, выраженные в терминах скоростей (быстрота изменения положения = импульс/массу). Напомним, что в формулировках законов движения Галилея — Ньютона использовались ускорения (или быстрота изменения быстроты изменения положения, т. е. уравнения «второго порядка»), тогда как в гамильтоновой формулировке нам достаточно говорить только о быстроте изменения величин (уравнения «первого порядка»). Все гамильтоновы уравнения выводятся всего лишь из одной важной величины: функции Гамильтона Н , представляющую собой полную энергиюсистемы, выраженную в переменных, описывающих положения и импульсы.
Гамильтонова формулировка дает весьма изящное и симметричное описание механики. Выпишем здесь гамильтоновы уравнения просто для того, чтобы понять, как они выглядят, хотя многие читатели, возможно, и не знакомы с принятыми в математическом анализе обозначениями, необходимыми для полного понимания — впрочем, оно сейчас и не требуется. Все, что нам сейчас действительно нужно знать о дифференциальном исчислении, ограничивается пониманием смысла «точки» в левых частях уравнений Гамильтона — она означает быстроту изменения по времени(в первом случае — импульса, во втором случае — положения):
Индекс i здесь использован просто для того, чтобы отличать все различные координаты импульсов ( р 1 , p 2 , p 3 , p 4 …) и положений ( х 1 , х 2, x 3 , x 4 …). Для n частиц, не ограниченных наложенными на них связями, мы получаем 3n координат импульсов и 3n координат положений (по одной координате для каждого из трех независимых направлений в пространстве). Символ относится к операции «частного дифференцирования» (взятию производной по одной переменной при сохранении постоянных значений всех остальных переменных), а Н , как сказано выше, означает функцию Гамильтона. (Если Вы ничего не знаете о «дифференцировании» — не стоит беспокоиться. Просто рассматривайте правые части уравнений Гамильтона как некие вполне определенные математические выражения, записанные через x i и p i .)
Координаты x 1, x 2… и, р 1 , p 2 ,…. могут на самом деле использоваться для обозначения более общих вещей, а не только обычных декартовых координат для частиц (т. е. когда x i — обычные расстояния, измеряемые по трем различным направлениям, расположенным под прямыми углами друг к другу). Например, некоторые из x i в гамильтоновом случае можно считать углами — тогда соответствующие р i превращаются в угловыемоменты (см. гл.6, подгл. «Уравнение Шредингера; уравнение Дирака») вместо импульсов — или вообще какими-нибудь совершенно абстрактными величинами. Замечательно, что при этом гамильтоновы уравнения по-прежнему сохраняют в точности ту же форму. Действительно, при подходящем выборе функции Гамильтона Н гамильтоновы уравнения остаются в силе для любойсистемы классических уравнений, а не только для уравнений Ньютона. В частности, они выполняются для теории Максвелла(—Лоренца), к рассмотрению которой мы вскоре приступим. Гамильтоновы уравнения можно записать и для специальной теории относительности. Даже общую теорию относительности (при соблюдении должной осторожности) можно представить в гамильтоновой форме. Кроме того, как мы убедимся в дальнейшем при знакомстве с уравнением Шредингера (см. гл.6, подгл. «Уравнение Шредингера; уравнение Дирака»), гамильтонова формулировка служит отправным пунктом для вывода уравнений квантовой механики. Такое единство формы в структуре динамических уравнений, сохранившееся несмотря на все революционные новшества, введенные в физические теории за минувшие столетия, поистине удивительна!
Фазовое пространство
Форма гамильтоновых уравнений позволяет нам «наглядно представить» эволюцию классической системы, используя весьма мощный и универсальный подход. Попытаемся вообразить «пространство» большого числа измерений, по одному измерению
на каждую из координат x 1 , x 2 … p i , p 2 …