Чтение онлайн

ЖАНРЫ

Шрифт:

Однако тенденция развития современных версий операционной системы UNIX заключается в предоставлении возможности динамического расширения функциональности ядра. Это, в частности, относится к файловой системе, драйверам устройств и сетевым протоколам (точнее, драйверам подсистемы STREAMS). Возможность работы с новыми периферийными устройствами без необходимости перекомпиляции ядра обеспечивается загружаемыми драйверами. Вместо того чтобы встраивать модуль драйвера, основываясь на статических таблицах и интерфейсах, ядро содержит набор функций, позволяющих загрузить необходимые драйверы и, соответственно, выгрузить их, когда необходимость работы с данным устройством отпадает. При этом структуры данных для доступа к драйверам устройств также являются динамическими.

Динамическая установка драйвера в ядро операционной системы требует выполнения следующих операций:

 Размещение и динамическое связывание символов драйвера. Эта операция аналогична загрузке динамических библиотек, и выполняется специальным загрузчиком.

 Инициализация

драйвера и устройства.

 Добавление точек входа драйвера в соответствующий коммутатор устройств.

 Установка обработчика прерываний драйвера.

Естественно, код динамически загружаемых драйверов сложнее, и содержит, помимо стандартных точек входа, ряд функций, отвечающих за загрузку и выгрузку драйвера, а также ряд дополнительных структур. Пример дополнительных функций и структур данных, которые должны быть определены в динамически загружаемом драйвере операционной системы Solaris 2.5, приведен в табл. 5.2.

Таблица 5.2. Дополнительные функции и структуры данных для загружаемых драйверов

_init
Функция инициализации и установки, вызываемая при загрузке драйвера
_fini
Функция, вызываемая перед выгрузкой драйвера, удаляющая его из системы
_infо
Функция, возвращающая информацию о драйвере по запросу ядра
struct modlinkage
Структура, используемая функциями
_init
,
_fini
и
_info
при загрузке, выгрузке и получении информации о драйвере
struct modldrv
Структура, экспортируемая ядру при загрузке драйвера, в частности, содержит адреса точек входа в драйвер

Помимо этого Solaris 2.5 предоставляет ряд функций ядра для работы с динамически загружаемыми драйверами: mod_install(9F), mod_remove(9F) и mod_info(9F).

Блочные устройства

Драйверы блочных устройств предназначены для обслуживания периферийного оборудования, обеспечивающего обмен данными с помощью фрагментов фиксированной длины, называемыми блоками, размер которых значительно превышает один байт. В основном эти драйверы используются файловой подсистемой и подсистемой управления памятью. Например, свопинг характеризуется обменом данными с устройством вторичной памяти, размер которых обычно равен размеру страницы, что составляет 4 или 8 Кбайт. Файловая подсистема производит чтение и запись данных фрагментами, размер которых равен одному или нескольким блокам устройства. Типичными представителями блочных устройств являются жесткий и гибкий диски.

Блочные устройства можно разделить на два типа в зависимости от того, используются ли они для хранения файловой системы или нет. Соответственно различается и схема доступа к этим устройствам. В последнем случае доступ к устройству осуществляется только через специальный файл устройства, представляющий интерфейс низкого уровня. Хотя обращение к устройствам, содержащим файловые системы, может также осуществляться через интерфейс низкого уровня, доступ к таким устройствам, как правило, осуществляется процессом косвенно, через запросы к файловой системе. Например, чтение или запись обычного файла вызывает операции с драйвером блочного устройства (жесткого диска), на котором расположена файловая система, хранящая данный файл. В этом случае обмен данными происходит при активном участии буферного кэша, позволяющего минимизировать число обращений непосредственно к физическому устройству.

Вообще говоря, операции ввода/вывода для блочного устройства могут быть вызваны рядом событий:

 Чтением или записью в обычный файл.

 Чтением или записью непосредственно в специальный файл устройства.

 Операциями подсистемы управления памятью: страничным замещением или свопингом.

Доступ к блочным устройствам осуществляется с помощью трех основных точек входа:

xxopen
,
xxclose
и
xxstrategy
. При этом за фактическое выполнение ввода/вывода отвечает
xxstrategy
. Единственным аргументом, передаваемым этой функции, является указатель на структуру
buf
, представляющую собой заголовок буфера обмена, с которой мы уже встречались в предыдущей главе при разговоре о буферном кэше. Структура
buf
содержит всю необходимую для операций ввода/вывода информацию. Основные поля структуры
buf
:

b_flags
Флаги.
Определяют состояние буфера (например,
B_BUSY
или
B_DONE
) и направление передачи данных (
B_READ
,
B_WRITE
,
B_PHYS
)
av_back
,
av_forw
Указатели двухсвязного рабочего списка буферов, ожидающих обработки драйвером
b_bufsize
Размер буфера
b_un.b_addr
Виртуальный адрес буфера
b_blkno
Номер блока начала данных на устройстве
b_bcount
Число байтов, которые требуется передать
b_dev
Старший и младший номера устройства

Использование заголовка

buf
при передачи блока данных показано на рис. 5.7.

Рис. 5.7. Обмен данными с блочным устройством (диском)

Ядро адресует дисковый блок, указывая vnode и смещение. Если доступ осуществляется к специальному файлу устройства, то смещение является физическим, отсчитываемым от начала устройства. Например, если специальный файл устройства /dev/dsk/c0t0d0s1 обеспечивает доступ ко второму разделу жесткого диска, то смещение будет отсчитываться от начала этого раздела. Если vnode представляет обычный файл, то смещение является логическим, отсчитываемым от начала файла.

Таким образом, блок устройства, содержащего файловую систему, может быть адресован двумя способами — либо через обычный файл и логическое смещение, либо через специальный файл устройства и физическое смещение на этом устройстве. Это, в свою очередь, может привести к различной идентификации одного и того же блока и, как следствие, двум различным копиям блока в памяти. Результатом такого несоответствия может стать потеря или нарушение целостности данных. Поэтому непосредственный доступ к специальному файлу такого устройства возможен только при размонтированной файловой системе.

Поскольку каждый дисковый блок связан с каким-либо файлом и соответственно с его vnode, а его образ в памяти — с физическими страницами, которые также связаны с vnode (через структуры описания физической памяти —

page
в SVR4,
pfdat
в SVR3), все операции ввода/вывода связаны с подкачкой и сохранением страниц и идентифицируются vnode.

Символьные устройства

Символьные устройства представляют собой значительную часть периферийного оборудования системы, включая терминалы, манипуляторы (например, мышь), клавиатуру и локальные принтеры. Основное отличие этих устройств от блочных заключается в том, что они, как правило, передают небольшие объемы данных.

Обмен данными с символьными устройствами происходит непосредственно через драйвер, минуя буферный кэш. При этом данные обычно копируются в драйвер из адресного пространства процесса, запросившего операцию ввода/вывода.

Если процесс сделал системный вызов ввода/вывода, например, read(2) или write(2) со специальным файлом символьного устройства, запрос направляется в файловую подсистему. Поскольку доступ к устройству обслуживается файловой системой specfs, рассмотренной ранее, в ответ на выполнение системного вызова процесса ядро выполняет вызов функции

spec_read
или
spec_write
соответственно для read(2) или write(2). Действия функций
spec_read
и
spec_write
похожи. Обе проверяют тип vnode и определяют, что устройство является символьным. После этого с помощью коммутатора ядро выбирает соответствующую точку входа драйвера, используя старший номер, хранящийся в поле
v_rdev
vnode, и вызывает эту функцию (соответственно
xxread
или
xxwrite
), передавая ей в качестве параметров старший и младший номера, ряд дополнительных параметров, зависящих от конкретного вызова, а также явно или неявно адресует область копирования данных в адресном пространстве процесса [54] .

54

Несколько иная схема применяется для драйверов подсистемы STREAMS, которые также имеют символьный интерфейс доступа. Эти драйверы будут рассматриваться в данной главе в разделе "Подсистема STREAMS".

Поделиться с друзьями: