Основы AS/400
Шрифт:
Возможность MI выполнять переход в четыре точки после каждой вычислительной команды обеспечивает набору команд большую мощность за счет их удлинения. В примере с арифметическим сложением — до четырех целей перехода, что увеличивает длину команды еще на 12 байтов. Команда может занимать в памяти до 25 байтов. Это не создает проблем во время выполнения, так как команды: MI не исполняются непосредственно. Однако размер программы увеличивается.
Опция индикатора работает аналогично опции перехода. Расширение содержит те же четыре 4-разрядных поля с теми же возможными значениями. Отличие в том, что вместо перехода при выполнении условия устанавливается индикатор. Индикатор представляет собой переменную в памяти, содержащую десятичные значения 1 или 0. Если в процессе выполнения вычислительной команды условие, заданное 4-разрядным полем, выполнено, то индикатор устанавливается в значение 1, в противном случае —в значение 0. Как и в случае перехода, в команде может быть задано до четырех индикаторов, которые указываются следом за операндами.
Многие читатели узнали
38
Многие годы ходила шутка, что безотказный прием для того, чтобы собрать большую аудиторию на конференции пользователей — включить слово «индикатор» в название презентации. По общему мнению, зал будет забит до отказа.
Рисунок 4.9а Команда арифметического сложения (ADDN)
На рисунках 4.9а, 4.9б и 4.9в показаны форматы трех команд ОРМ MI. Команда арифметического сложения ADDN имеет шестнадцатиричный [ 39 ] код операции 1043, а также три операнда. Это вычислительная команда, и функция сложения в ней имеет код 43.
39
Шестнадцатиричные числа — элемент системы счисления с основанием 16. В этой системе используются 16 цифр 0-9 и А-F. Часто для краткости в шестнадцатиричном виде представляют наборы битов. Каждое 4-битное поле может быть представлено одной шестнадцатиричной цифрой. Так, двоичное 0001 в шестнадцатиричной системе будет 1, 0010 — 2... 1111 — F.
Рисунок 4.9b Команда перехода (B)
Рисунок 4.9c Копирование байтов с выравниванием влево и заполнителем (CPYBLAP)
В таблице 4.27 приведены 11 других форм ADDN. Различные варианты команды получаются путем комбинации опций сокращенной команды, округления, индикатора и перехода. Обратите внимание, что кодом функции по-прежнему остается 43.
ADDNS | 1143 | Короткая |
ADDNR | 1243 | С округлением |
ADDNSR | 1243 | Короткая с округлением |
ADDNI | 1843 | Индикаторная |
ADDNIS | 1943 | Индикаторная короткая |
ADDNIR | 1A43 | Индикаторная с округлением |
ADDNISR | 1B43 | Идикаторная короткая с округлением |
ADDNB | 1C43 | С переходом |
ADDNBS | 1D43 | Короткая с переходом |
ADDNBR | 1E43 | С оКороткая с округлением и с пере- |
ходом |
Таблица 4.2 Формы команды арифметического сложения
Команда перехода (рисунок 4.9б) имеет только один операнд — точку перехода и задает безусловный переход. В MI нет отдельной команды условного перехода, а все условные ветвления выполняются в результате некой вычислительной команды. Так как переход является не вычисляемой командой, у нее нет разных форм, как у ADDN.
Третья команда (рисунок 4.9) имеет чудесное, хоть и немного длинное, имя «CPYBLAP» («Copy Bytes Left-Adjusted with Pad»). Она позволяет
скопировать строку байтов из одного поля в другое. Байты выравниваются по левому краю принимающего поля, и если исходное поле короче принимающего, то оставшиеся байты будут заполнены заданным значением. Понятно, что это лишь одна из многих команд копирования в MI. В большинстве коммерческих приложений копирование используется очень интенсивно. Возможно, читатель узнал в «CPYBLAP» аналог оператору «Move» в языке Cobol или «MOVEL» с P в колонке полувыравнивания из RPG.Мы рассмотрели лишь три команды MI (а есть еще сотни и сотни других) и только команды: MI (вычислительные и перехода) модели OPM. Как уже упоминалось, существуют также вычислительные команды и команды перехода для поддержки ILE. В следующих главах мы поговорим о командах для работы с объектами.
Выводы
Независимость от технологии, обеспечиваемая MI, чрезвычайно важна, так как позволяет избегать изменений в пользовательских приложениях и в OS/400. Все возможности нового оборудования могут быть задействованы сразу же после его установки.
Но это не единственное преимущество MI! Вычислительная среда со временем меняется: наглядные примеры — приложения клиент/сервер и концепция сетевых вычислений. Если бы AS/400, первоначально предназначенная для интерактивной работы, не смогла приспособиться к роли сервера, она бы уже давно устарела.
MI — мощнейший интерфейс не только в силу своей независимости от технологии, но и благодаря возможностям расширения. Новые инструкции и функции присутствуют почти в каждой версии системы. Интерфейс MI ориентирован на приложения, так как поддерживает необходимые для этого API, и по мере появления новых приложений добавить новые API не составит проблемы. Расширяемость архитектуры MI делает этот интерфейс чрезвычайно долговечным.
Глава 5
Объекты
Сетевые вычисления и Интернет сделали тему объектных технологий бестселлером компьютерных новостей. Распространение таких языков программирования, как Java и С++, заставляет разработчиков приложений изменить свое отношение к традициям и признать преимущества новых объектно-ориентированных языков.
Подобно другим технологиям, которые мы считаем новыми, объекты используются в программировании уже более 30 лет. Впервые они появились в конце 60-х годов в языках типа Simula 67, применявшихся для программ моделирования. Современные языки программирования, такие как Java, C+ + и Smalltalk — прямые потомки Simula 67. Программы моделирования имитируют поведение объектов реального мира. Аналогично, прикладные программы для бизнеса, содержащие объекты и операции над ними, моделируют реальные деловые отношения.
ОС работают с аппаратными и программными объектами, такими как устройства ввода-вывода и программы. Использование объектов в ОС выглядит совершенно естественным. О создании объектно-ориентированной ОС говорят многие фирмы, такие как Microsoft, Apple, Novell/USL (UNIX Systems Laboratory) и Sun Microsystems, однако, лишь немногие из них смогли реализовать свои планы. Одна из таких фирм — Next, уже поставляющая на рынок объектно-ориентированную ОС под названием NextStep.
Есть, конечно, и другая объектно-ориентированная ОС. С момента появления System/38 мы строим ОС (CPF и OS/400) по объектно-ориентированной модели [ 40 ] . Более того, мы не остановились на этом, но сделали объекты фундаментальной частью архитектуры машины. Как уже отмечалось в главе 4, MI состоит из двух частей: команд и объектов. В этой главе мы рассмотрим использование объектов в AS/400.
40
Некоторые из нас, создателей System/38, были очень хорошо знакомы с языками компьютерного моделирования уже в конце 60-х. Я сам использовал объектные модели в своей докторской диссертации для компьютерного моделирования различных архитектур виртуальной памяти. Решение использовать объекты в System/38 пришло после нашего участия в проекте Future Systems (подробнее об этом см. в Приложении).
Иногда говорят, что AS/400 это не объектно-ориентированная система, а система на основе объектов (object-based). Различие этих двух терминов имеет смысл при обсуждении языков программирования. Например, есть языки на основе объектов, такие как Ada, и объектно-ориентированные языки, такие как Smalltalk-80. Гради Буч (Grady Booch) определил различия между этими двумя типами языков. По Бучу, в языке на основе объектов отсутствует наследование [ 41 ] . Как уже вкратце упоминалось в главе 3, наследование определяет иерархию классов, где подкласс заимствует структуру или поведение одного или нескольких базовых классов. Наследование позволяет создавать новые типы объектов. Так как объекты AS/400 ничего не наследуют от других объектов, и прикладные программисты, пишущие приложения для этой системы, не могут создавать новые типы объектов, то вероятно, правильнее называть AS/ 400 системой на основе объектов. Но какое бы имя мы не выбрали, важно то, что AS/
41
Grady Booch. Object Oriented Design with Appliations. The Benjamin/Cummings Publishing Company, Inc. 1991.