Программирование на языке Пролог для искусственного интеллекта
Шрифт:
В промежутке между входом и выходом можно получить трассировочную информацию для всех подцелей этой цели. Таким образом, мы можем следить за обработкой нашего вопроса на всем протяжении нисходящего пути от исходной цели к целям самого нижнего уровня, вплоть до отдельных фактов. Такая детальная трассировка может оказаться непрактичной из-за непомерно большого количества трассировочной информации. Поэтому пользователь может применить "селективную" трассировку. Существуют два механизма селекции: первый подавляет выдачу информации о целях, расположенных ниже некоторого уровня; второй трассирует не все предикаты, а только некоторые, указанные пользователем.
Средства отладки приводятся в действие при помощи системно-зависимых встроенных предикатов. Обычно
запускает полную трассировку всех целей, следующих за
прекращает дальнейшее трассирование.
устанавливает режим трассировки предиката P. Обращение к
прекращает "слежку" за P.
Трассировка ниже определенной глубины может быть подавлена во время выполнения программы при помощи специальных команд. Существуют и другие команды отладки, такие как возврат к предыдущей точке процесса вычислений. После такого возврата можно, например, повторить вычисления с большей степенью детализации трассировки.
8.5. Эффективность
Существует несколько аспектов эффективности программ, включая такие наиболее общие, как время выполнения и требования по объему памяти. Другим аспектом является время, необходимое программисту для разработки программы.
Традиционная архитектура вычислительных машин не очень хорошо приспособлена для реализации прологовского способа выполнения программ, предусматривающего достижение целей из некоторого списка. Поэтому ограниченность ресурсов по времени и пространству сказывается в Прологе, пожалуй, в большей степени, чем в большинстве других языков программирования. Вызовет ли это трудности в практических приложениях, зависит от задачи. Фактор времени практически не имеет значения, если пролог-программа, которую запускают по несколько раз в день, занимает 1 секунду процессорного времени, а соответствующая программа на каком-либо другом языке, скажем на Фортране, — 0.1 секунды. Разница в эффективности становится существенной, если эти две программы требуют 50 и 5 минут соответственно.
С другой стороны, во многих областях применения Пролога он может существенно сократить время разработки программ. Программы на Прологе, вообще говоря, легче писать, легче понимать и отлаживать, чем программы, написанные на традиционных языках. Задачи, тяготеющие к "царству Пролога", включают в себя обработку символьной, нечисловой информации, структурированных объектов данных и отношений между ними. Пролог успешно применяется, в частности. в таких областях, как символьное решение уравнений, планирование, базы данных, автоматическое решение задач, машинное макетирование, реализация языков программирования, дискретное и аналоговое моделирование, архитектурное проектирование, машинное обучение, понимание естественного языка, экспертные системы и другие задачи искусственного интеллекта. С другой стороны, применение Пролога в области вычислительной математики вряд ли можно считать естественным.
Прогон откомпилированной программы обычно имеет большую эффективность, чем интерпретация. Поэтому, если пролог-система содержит как интерпретатор, так и компилятор, следует пользоваться компилятором, если время выполнения критично.
Если программа страдает неэффективностью, то ее обычно можно кардинально улучшить, изменив сам алгоритм. Однако для того, чтобы это сделать, необходимо изучить процедурные аспекты программы. Простой способ сокращения времени выполнения состоит в нахождении
более удачного порядка предложений в процедуре и целей — в телах процедур. Другой, относительно простой метод заключается в управлении действиями системы посредством отсечений.Полезные идеи, относящиеся к повышению эффективности, обычно возникают только при достижении более глубокого понимания задачи. Более эффективный алгоритм может, вообще говоря, привести к улучшениям двух видов:
• Повышение эффективности поиска путем скорейшего отказа от ненужного перебора и от вычисления бесполезных вариантов.
• Применение cтруктур данных, более приспособленных для представления объектов программы, с целью реализовать операции над ними более эффективно.
Мы изучим оба вида улучшений на примерах. Кроме того, мы рассмотрим на примере еще один метод повышения эффективности. Этот метод основан на добавлении в базу данных тех промежуточных результатов, которые с большой вероятностью могут потребоваться для дальнейших вычислений. Вместо того, чтобы вычислять их снова, программа просто отыщет их в базе данных как уже известные факты.
8.5.1. Повышение эффективности решения задачи о восьми ферзях
В качестве простого примера повышения эффективности давайте вернемся к задаче о восьми ферзях (см. рис. 4.7). В этой программе Y-координаты ферзей перебираются последовательно — для каждого ферзя пробуются числа от 1 до 8. Этот процесс был запрограммирован в виде цели
Процедура
Это маленькое изменение уменьшит время, необходимое для нахождения первого решения, в 3-4 раза.
В следующем примере такая же простая идея, связанная с изменением порядка, превращает практически неприемлемую временную сложность в тривиальную.
8.5.2. Повышение эффективности программы раскраски карты
Задача раскраски карты состоит в приписывании каждой стране на заданной карте одного из четырех заданных цветов с таким расчетом, чтобы ни одна пара соседних стран не была окрашена в одинаковый цвет. Существует теорема, которая гарантирует, что это всегда возможно.
Пусть карта задана отношением соседства
где
Решение представим в виде списка пар вида
которые устанавливают цвет для каждой страны на данной карте. Для каждой карты названия стран всегда известны заранее, так что задача состоит в нахождении цветов. Таким образом, для Европы задача сводится к отысканию подходящей конкретизации переменных C1, C2, СЗ и т.д. в списке