Чтение онлайн

ЖАНРЫ

Программирование на языке Пролог для искусственного интеллекта

Братко Иван

Шрифт:

[а, b, с]-[]

или

[a, b, c, d, e]-[d, e]

или

[a, b, c, d, e | T]-[d, e | T]

или

[а, b, с | T]-T

где T — произвольный список, и т.п. Пустой список представляется любой парой

L-L
.

Поскольку второй член пары указывает на конец списка, этот конец доступен сразу. Это можно использовать для эффективной реализации конкатенации. Метод показан на рис. 8.1. Соответствующее отношение конкатенации записывается на Прологе в виде факта

конкат( A1-Z1, Z1-Z2, A1-Z2).

Давайте

используем
конкат
для конкатенации двух списков: списка
[а, b, с]
, представленного парой
[а, b, с | Т1]-Т1
, и списка
[d, e]
, представленного парой
[d, e | Т2]-Т2
:

?- конкат( [а, b, с | Т1]-T1, [d, e | Т2]-Т2, L ).

Оказывается, что для выполнения конкатенации достаточно простого сопоставления этой цели с предложением

конкат
. Результат сопоставления:

T1 = [d, e | Т2]

L = [a, b, c, d, e | T2]-T2

Рис. 8.1. Конкатенация списков, представленных в виде разностных пар. 

L1
представляется как
A1-Z1
,
L2
как
A2-Z2
и результат
L3
 — как
A1-Z2
. При этом должно выполняться равенство
Z1 = А2
.

8.5.4. Повышение эффективности зa счет добавления вычисленных фактов к базе данных

Иногда в процессе вычислений приходится одну и ту же цель достигать снова и снова. Поскольку в Прологе отсутствует специальный механизм выявления этой ситуации, соответствующая цепочка вычислений каждый раз повторяется заново.

В качестве примера рассмотрим программу вычисления N-го числа Фибоначчи для некоторого заданного N. Последовательность Фибоначчи имеет вид:

1, 1, 2, 3, 5, 8, 13, …

Каждый член последовательности, за исключением первых двух, представляет собой сумму предыдущих двух членов. Для вычисления N-гo числа Фибоначчи F определим предикат

фиб( N, F)

Нумерацию чисел последовательности начнем с N = 1. Программа для

фиб
обрабатывает сначала первые два числа Фибоначчи как два особых случая, а затем определяет общее правило построения последовательности Фибоначчи:

фиб( 1, 1). % 1-e число Фибоначчи

фиб( 2, 1). % 2-e число Фибоначчи

фиб( N, F) :- % N-e число Фиб., N > 2

 N > 2,

 N1 is N - 1, фиб( N1, F1),

 N2 is N - 2, фиб( N2, F2),

 F is F1 + F2. % N-e число есть сумма двух

% предыдущих

Процедура

фиб
имеет тенденцию к повторению вычислений. Это легко увидеть, если трассировать цель

?- фиб( 6, F).

На рис. 8.2 показано, как протекает этот вычислительный процесс. Например, третье число Фибоначчи

f( 3)
понадобилось в трех местах, и были повторены три раза одни и те же вычисления.

Этого легко избежать, если запоминать каждое вновь вычисленное число. Идея состоит в применении встроенной процедуры

assert
для добавления этих (промежуточных) результатов в базу данных в виде фактов. Эти факты должны предшествовать другим предложениям, чтобы предотвратить применение общего правила в случаях, для которых результат уже известен. Усовершенствованная процедура
фиб2
отличается от
фиб
только этим добавлением:

фиб2( 1, 1). % 1-e число Фибоначчи

фиб2( 2, 1). % 2-e число Фибоначчи

фиб2( N, F) :- % N-e число Фиб., N > 2

 N > 2,

 N1 is N - 1, фиб2( N1, F1),

 N2 is N - 2, фиб2( N2, F2),

 F is F1 + F2, % N-e число есть сумма

% двух предыдущих

 asserta( фиб2( N, F) ). % Запоминание N-го числа

Эта программа, при попытке достичь какую-либо цель, будет смотреть сперва на накопленные об этом отношении факты и только после этого применять общее правило. В результате, после вычисления цели

фиб2( N, F)
, все числа Фибоначчи вплоть до N-го будут сохранены. На рис. 8.3 показан процесс вычислении 6-го числа при помощи
фиб2
. Сравнение этого рисунка с рис. 8.2. показывает, на сколько уменьшилась вычислительная сложность. Для больших N такое уменьшение еще более ощутимо.

Запоминание промежуточных результатов — стандартный метод, позволяющий избегать повторных вычислений. Следует, однако, заметить, что в случае чисел Фибоначчи повторных вычислений можно избежать еще и применением другого алгоритма, а не только запоминанием промежуточных результатов.

Рис. 8.2. Вычисление 6-го числа Фибоначчи процедурой

фиб
.

Рис. 8.3. Вычисление 6-го числа Фибоначчи при помощи процедуры

фиб2
, которая запоминает предыдущие результаты. По сравнению с процедурой
фиб
здесь вычислений меньше (см. рис. 8.2).

Этот новый алгоритм позволяет создать программу более трудную для понимания, зато более эффективную. Идея состоит на этот раз не в том, чтобы определить N-e число Фибоначчи просто как сумму своих предшественников по последовательности, оставляя рекурсивным вызовам организовать вычисления "сверху вниз" вплоть до самых первых двух чисел. Вместо этого можно работать "снизу вверх": начать с первых двух чисел и продвигаться вперед, вычисляя члены последовательности один за другим. Остановиться нужно в тот момент, когда будет достигнуто N-e число. Большая часть работы в такой программе выполняется процедурой

фибвперед( М, N, F1, F2, F)

Здесь F1 и F2 — (М – 1)-e и М-e числа, а F — N-e число Фибоначчи. Рис. 8.4 помогает понять отношение

фибвперед
. В соответствии с этим рисунком
фибвперед
находит последовательность преобразований для достижения конечной конфигурации (в которой М = N) из некоторой заданной начальной конфигурации. При запуске
фибвперед
все его аргументы, кроме F, должны быть конкретизированы, а М должно быть меньше или равно N. Вот эта программа:

Поделиться с друзьями: