Чтение онлайн

ЖАНРЫ

Программирование на языке Пролог для искусственного интеллекта

Братко Иван

Шрифт:

Для того, чтобы найти ациклический путь P между А и Z в графе G, необходимо:

Если А = Z , то положить P = [А], иначе найти ациклический путь P1 из произвольной вершины Y в Z, а затем найти путь из А в Y, не содержащий вершин из P1.

В этой формулировке неявно предполагается, что существует еще одно отношение, соответствующее поиску пути со следующий ограничением: путь не должен проходить через вершины из некоторого подмножества (в данном случае P1) множества всех вершин графа. В связи с этим мы определим ещё одну процедуру:

путь1( А, P1, G, P)

Аргументы в соответствии с рис. 9.19 имеют следующий

смысл:

• А — некоторая вершина,

• G — граф,

• P1 — путь в G,

• P — ациклический путь в G, идущий из А в начальную вершину пути P1, а затем — вдоль пути P1 вплоть до его конца.

Pис. 9.19. Отношение

путь1
Путь
 — это путь между
А
и
Z
, в своей заключительной части он перекрывается с
Путь1
.

Между

путь
и
путь1
имеется следующее соотношение:

путь( А, Z, G, P) :- путь1( А, [Z], G, P).

На рис. 9.19 показана идея рекурсивного определения отношения

путь1
. Существует "граничный" случай, когда начальная вершина пути P1 (Y на рис. 9.19) совпадает с начальной вершиной А пути P. Если же начальные вершины этих двух путей не совпадают, то должна существовать такая вершина X, что

(1) Y — вершина, смежная с X,

(2) X не содержится в P1 и

(3) для P выполняется отношение

путь1( А, [X | P1], G, P)
.

путь( A, Z, Граф, Путь) :-

 путь1( А, [Z], Граф, Путь).

путь1( А, [А | Путь1, _, [А | Путь1] ).

путь1( А, [Y | Путь1], Граф, Путь) :-

 смеж( X, Y, Граф),

 принадлежит( X, Путь1), % Условие отсутствия цикла

 путь1( А, [ X, Y | Путь1], Граф, Путь).

Рис. 9.20. Поиск в графе

Граф
ациклического пути
Путь
из А в Z.

На рис. 9.20 программа показана полностью. Здесь

принадлежит
 — отношение принадлежности элемента списку. Отношение

смеж( X, Y, G)

означает, что в графе G существует дуга, ведущая из X в Y. Определение этого отношения зависит от способа представления графа. Если G представлен как пара множеств (вершин и ребер)

G = граф( Верш, Реб)

то

смеж( X, Y, граф( Верш, Реб) ) :-

 принадлежит( p( X, Y), Реб);

 принадлежит( p( Y, X), Реб).

Классическая задача на графах — поиск Гамильтонова цикла, т.е. ациклического пути, проходящего через все вершины графа. Используя отношение

путь
, эту задачу можно решить так:

гамильтон( Граф, Путь) :-

 путь( _, _, Граф, Путь),

 всевершины( Путь, Граф).

всевершины( Путь, Граф) :-

 not (вершина( В, Граф),

 not
принадлежит( В, Путь) ).

Здесь

вершина( В, Граф)
означает:
В
 — вершина графа
Граф
.

Каждому пути можно приписать его стоимость. Стоимость пути равна сумме стоимостей входящих в него дуг. Если дугам не приписаны стоимости, то тогда, вместо стоимости, говорят о длине пути.

Для того, чтобы наши отношения

путь
и
путь1
могли работать со стоимостями, их нужно модифицировать, введя дополнительный аргумент для каждого пути:

путь( А, Z, G, P, С)

путь1( A, P1, C1, G, P, С)

Здесь С — стоимость пути P, a C1 — стоимость пути P1. В отношении

смеж
также появится дополнительный аргумент, стоимость дуги. На рис. 9.21 показана программа поиска пути, которая строит путь и вычисляет его стоимость.

путь( А, Z, Граф, Путь, Ст) :-

 путь1( A, [Z], 0, Граф, Путь, Ст).

путь1( А, [А | Путь1], Ст1, Граф, [А | Путь1], Ст).

путь1( А, [Y | Путь1], Ст1, Граф, Путь, Ст) :-

 смеж( X, Y, СтXY, Граф),

 not принадлежит( X, Путь1),

 Ст2 is Ст1 + СтXY,

 путь1( А, [ X, Y | Путь1], Ст2, Граф, Путь, Ст).

Рис. 9.21. Поиск пути в графе:

Путь
 — путь между А и Z в графе
Граф
стоимостью Ст.

Эту процедуру можно использовать для нахождения пути минимальной стоимости. Мы можем построить путь минимальной стоимости между вершинами

Верш1
,
Верш2
графа
Граф
, задав цели

путь( Bepш1, Верш2, Граф, МинПуть, МинСт),

 not( путь( Верш1, Верш2, Граф, _, Ст), Ст<МинСт )

Аналогично можно среди всех путей между вершинами графа найти путь максимальной стоимости, задав цели

путь( _, _, Граф, МаксПуть, МаксСт),

 not( путь( _, _, Граф, _, Ст), Ст > МаксСт)

Заметим, что приведенный способ поиска максимальных и минимальных путей крайне неэффективен, так как он предполагает просмотр всех возможных путей и потому не подходит для больших графов из-за своей высокой временной сложности. В искусственном интеллекте задача поиска пути возникает довольно часто. В главах 11 и 12 мы изучим более сложные методы нахождения оптимальных путей. 

9.5.3. Построение остовного дерева

Граф называется связным, если между любыми двумя его вершинами существует путь. Пусть G = (V, E) — связный граф с множеством вершин V и множеством ребep E. Остовное дерево графа G — это связный граф T = ( V, E'), где E' — подмножество E такое, что

(1) T — связный граф, 

(2) в T нет циклов.

Выполнение этих двух условий гарантирует то, что T — дерево. Для графа, изображенного в левой части рис. 9.18, существует три остовных дерева, соответствующих следующим трем спискам ребер:

Поделиться с друзьями: