Программирование на языке Пролог для искусственного интеллекта
Шрифт:
9.4. Отображение деревьев
Так же, как и любые объекты данных в Прологе, двоичное дерево T может быть непосредственно выведено на печать при помощи встроенной процедуры
хотя и отпечатает всю информацию, содержащуюся в дереве, но действительная структура дерева никак при этом не будет выражена графически. Довольно утомительная работа — пытаться представить
Существует относительно простой способ это сделать. Уловка состоит в том, чтобы изображать дерево растущим слева направо, а не сверху вниз, как обычно. Дерево нужно повернуть влево таким образом, чтобы корень стал его крайним слева элементом, а листья сдвинулись вправо (рис. 9.16).
Рис. 9.16. (а) Обычное изображение дерева. (b) То же дерево, отпечатанное процедурой
Давайте определим процедуру
так, чтобы она отображала дерево в форме, показанной на рис. 9.16. Принцип работы этой процедуры:
Для того, чтобы отобразить непустое дерево T, необходимо:
(1) отобразить правое поддерево дерева T с отступом вправо на расстояние H;
(2) отпечатать корень дерева T;
(3) отобразить левое поддерево дерева T с отступом вправо на расстояние H.
Величина отступа H, которую можно выбирать по желанию, — это дополнительный параметр при отображении деревьев. Введем процедуру
печатающую дерево T с отступом на H пробелов от левого края листа. Связь между процедурами
На рис. 9.17 показана программа целиком. В этой программе предусмотрен сдвиг на 2 позиции для каждого уровня дерева. Описанный принцип отображения можно легко приспособить для деревьев других типов.
Рис. 9.17. Отображение двоичного дерева.
9.14. Наша процедура изображает дерево, ориентируя его необычным образом: корень находится слева, а листья — справа. Напишите (более сложную) процедуру для отображения дерева, ориентированного обычным образом, т.е. с корнем наверху и листьями внизу.
9.5. Графы
9.5.1. Представление графов
Графы используются во многих приложениях, например для представления отношений, ситуаций или структур задач. Граф определяется как множество вершин вместе с множеством ребер, причем каждое ребро задается парой вершин. Если ребра направлены, то их также называют дугами. Дуги задаются упорядоченными парами.
Такие графы называются направленными. Ребрам можно приписывать стоимости, имена или метки произвольного вида, в зависимости от конкретного приложения. На рис. 9.18 показаны примеры графов.В Прологе графы можно представлять различными способами. Один из них — каждое ребро записывать в виде отдельного предложения. Например, графы, показанные на рис. 9.18, можно представить в виде следующего множества предложений:
Другой способ — весь граф представлять как один объект. В этом случае графу соответствует пара множеств — множество вершин и множество ребер. Каждое множество можно задавать при помощи списка, каждое ребро — парой вершин. Для объединения двух множеств в пару будем применять функтор
Рис. 9.18. (а) Граф. (b) Направленный граф. Каждой дуге приписана ее стоимость.
Для представления направленного графа (рис. 9.18), применив функторы
Если каждая вершина графа соединена ребром еще по крайней мере с одной вершиной, то в представлении графа можно опустить множество вершин, поскольку оно неявным образом содержится в списке ребер.
Еще один способ представления графа — связать с каждой вершиной список смежных с ней вершин. В этом случае граф превращается в список пар, каждая из которых состоит из вершины- плюс ее список смежности. Наши графы (рис. 9.18), например, можно представить как
Здесь символы '
Какой из способов представления окажется более удобным, зависит от конкретного приложения, а также от того, какие операции имеется в виду выполнять над графами. Вот типичные операции:
• найти путь между двумя заданными вершинами;
• найти подграф, обладающий некоторыми заданными свойствами.
Примером последней операции может служить построение основного дерева графа. В последующих разделах, мы рассмотрим некоторые простые программы для поиска пути в графе и построения основного дерева.
9.5.2. Поиск пути в графе
Пусть G — граф, а А и Z — две его вершины. Определим отношение
где P — ациклический путь между А и Z в графе G. Если G — граф, показанный в левой части рис. 9.18, то верно:
Поскольку путь не должен содержать циклов, любая вершина может присутствовать в пути не более одного раза. Вот один из методов поиска пути: