Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:
Вспомним о статье Литлвуда 1914 года (см. главу 14.vii), где он доказал, что неверно утверждение, что Li (x)всегда превосходит (x). Это означает, что разность рано или поздно станет положительной. Поскольку главные члены очень быстро убывают по величине, а функция Мебиуса делает несколько первых из них отрицательными, включая и по-настоящему большие (при N = 2, N = 3 и N = 5), нелегко представить себе, как же эти главные члены вообще могут внести в разность какой-нибудь иной вклад, кроме как большое отрицательное число. Если в итоге разность должна оказаться положительной (а Литлвуд доказал, что такое рано или поздно случится), то это отрицательное число должно поглотиться большими, положительными, вторичными членами. Чтобы такое произошло, вторичные члены — нули дзета-функции — должны серьезным образом выйти из-под контроля. Судя по всему, так они и делают.
Чтобы
Общее представление о том, что при этом происходит, дается на рисунке 21.7. Там представлены три функции: Li(10 крит. прямая), Li(100 крит. прямая) и Li(1000 крит. прямая). Во всех трех случаях показано, как отображается один и тот же отрезок критической прямой — отрезок от 1/ 2– 5 iдо 1/ 2+ 5 i.
Рисунок 21.7.Li( x критическая прямая) при x= 10, 100 и 1000. Отображаемая часть критической прямой представляет собой отрезок от 1/ 2– 5 iдо 1/ 2+ 5 i.
Как видно, при увеличении xот 10 до 100 и далее до 1000 происходят следующие явления.
• Спирали растут в размере, но при этом по-прежнему сходятся к тем же двум точкам – iи i.
• Отрезок критической прямой, который мы отображаем (длина его равна 10 единицам), все сильнее и сильнее растягивается, накручиваясь все большее и большее число раз вокруг точек – iи i.
• Верхняя и нижняя спирали приближаются друг к другу, «целуются» при каком-то значении xмежду 100 и 1000, а после этого пересекаются (спирали в действительности «целуются», когда x = 399,6202933538…).
Выбранный нами отрезок критической прямой слишком короткий для того, чтобы достичь первой пары нулей при 1/ 2± 14,134725 i. Поскольку сама прямая растягивается, а спирали при этом, наматываясь все более и более вокруг точек – iи i, растут в размере, возникает интересный вопрос. Не случится ли так, что растяжение прямой и намотка спиралей удержат нули дзета-функции на небольшом удалении от точек – iи iнезависимо от того, сколь сильно увеличились спирали? Ответ — нет; по мере роста xнули дзета-функции отображаются в точки, расположенные сколь угодно далеко. Когда равняется первому нулю дзета-функции (это нуль при 1/ 2+ 14,134725 i), а аргумент xдостигает скромного триллиона, функция Li (x )добирается до вещественных частей, превышающих 2200.
В главе 14.vii упоминался недавний результат, полученный Бейсом и Хадсоном, — первое литлвудово нарушение (когда (x)впервые оказывается больше чем Li (x)) происходит до, а весьма вероятно, что и при x= 1,39822x10 316. Представим себе, что нам надо повторить весь процесс, с помощью которого мы вычислили (1000 000), но для указанного числа (назовем его числом Бейса-Хадсона) вместо 1000 000. Какая арифметика была бы тут задействована?
Ясно, что пришлось бы взять не 13, а большее число значений функции J. Корень 1050-й степени из числа Бейса-Хадсона равен 2,0028106…, а корень 1051-й степени равен 1,99896202…, так что надо будет взять корни первой, второй, …, 1050-й степени из этого числа и вычислить функцию Jпри всех этих аргументах. Это не так уж страшно, потому что
многие числа между 1 и 1050 делятся на точные квадраты, а потому функция Мебиуса для них равна нулю. Сколь многие? На самом деле таких чисел 411, так что остается посчитать 639 значений функции J. [201]201
Заметим, что 639:1050 = 0,6085714…. Для больших чисел Nвероятность того, что Nсвободно от квадратов, равна ~ 6/ 2, т.е. 0,60792710…. Вспоминая из главы 5 найденное Эйлером решение базельской задачи, можно заметить, что эта вероятность равна 1/ (2). Это верно и в общем случае. Вероятность того, что положительное целое число N, выбранное случайным образом, не делится на п-ю степень никакого целого числа, равна ~ 1/ (n).Например, среди всех чисел, не превышающих 1000 000, в действительности 982 954 не делятся ни на какую шестую степень; при этом 1/ (6) равняется 0,98295259226458….
Изображенные на рисунке 21.7 двойные спирали пересекают положительную часть вещественной оси последовательно все далее на восток — в точках 2,3078382, 6,1655995 и 13,4960622. Если бы мы проводили вычисления для числа Бейса-Хадсона, то двойная спираль пересекла бы вещественную ось при гораздо большем значении, определяемом числом, которое начинается как 325 771 513 660 и далее содержит еще 144 цифры дозапятой. Спирали при этом невообразимо широкие, но, несмотря на это, все равно сходятся к iи – i. Это означает, что верхняя и нижняя спирали в сильной степени накладываются друг на друга — настолько сильно, что на рисунке их невозможно было бы различить. А критическая прямая, испещренная сидящими на ней нулями (если ГР верна!), колоссально растянута. Тогда на рисунке, аналогичном рисунку 21.3 , в центре была бы значительно большая дыра — хотя все равно с центром в i, — а спираль триллионы раз наматывалась бы между двумя последовательными нулями с малыми номерами, весьма эффективно разбрасывая их координаты по комплексной плоскости, так что вещественные части колебались бы между чудовищно большими отрицательными и чудовищно большими положительными числами. И все это относится только к первым из 639 строк в таблице для вычисления (число Бейса-Хадсона). Вторичные члены и правда разошлись не на шутку.
Во всех вычислениях, проводившихся в данной главе, предполагалось (о чем мы время от времени напоминали), что ГР верна. Если она неверна, то наши изящные окружности и спирали представляют собой не более чем приближение, а где-то на большой высоте вдоль критической прямой — для значений где-то далеко-далеко в той бесконечной сумме по вторичным членам — логика нашего рассмотрения рассыпается. В теории, касающейся остаточного члена, ГР занимает центральное место.
Мы достигли главной цели, поставленной перед математической частью этой книги, — показать глубокую связь между распределением простых чисел, воплощенным в функции (x), и нетривиальными нулями дзета-функции, которые дают значительный (а по теореме Литлвуда — временами и доминантный) вклад в разность между (x)и Li (x), т.е., другими словами, в остаточный член в ТРПЧ.
Все это открылось нам в блестящей работе Бернхарда Римана 1859 года. Сегодня, конечно, мы знаем намного больше, чем было известно в 1859 году. Однако великая головоломка, впервые сформулированная в той работе, по-прежнему остается нерешенной — она противостоит атакам лучших умов планеты так же твердо, как когда Риман писал о своих «недолгих бесплодных попытках» доказать ее в далекие времена, когда аналитическая теория чисел только-только родилась. Каковы же перспективы на сегодняшний день, когда усилия расколоть орешек ГР прилагаются уже пятнадцатое десятилетие?
Глава 22. Она или верна, или нет
Можно находить известное удовлетворение в наличии некоторой симметрии, выражающейся в том, что после стодвадцатилетнего пребывания среди математиков Гипотеза Римана (ГР) привлекла внимание и физиков. Как отмечалось в главе 10.i, сам Риман в большой степени обладал воображением, присущим ученому-физику. «Четыре из девяти работ, которые он успел сам опубликовать, относятся к физике» (Лаугвитц). Кроме того, как мне напомнила специалист по теории чисел Ульрике Форхауер [202] , во времена Римана деление на математиков и физиков было не слишком отчетливым. А незадолго до того оно не проводилось вовсе.
202
На домашней страничке Ульрике на веб-сайте Ульмского университета вывешена фотография, на которой она стоит рядом с надгробным камнем Бернхарда Римана в итальянской Селаске.