Чтение онлайн

ЖАНРЫ

Путешествие от частицы до Вселенной. Математика газовой динамики
Шрифт:

Однако вскоре было установлено, что для описания движения частицы недостаточно кинетической энергии. Если подбросить тело в воздух, его начальная кинетическая энергия будет высока, но вскоре тело останавливается и начинает падать вниз. Куда девается его кинетическая энергия? Очевидно, что она никуда не исчезает, поскольку, падая, тело ускоряется, возвращая исходную кинетическую энергию. Должно быть, эта энергия хранится в теле в каком-то виде, из которого может снова возникнуть.

Решение задачи было связано с открытием понятия потенциальной энергии, то есть потенциала тела для получения кинетической энергии. Например, камень, расположенный на крыше небоскреба, обладает большим количеством потенциальной энергии: если его уронить, его кинетическая энергия в момент достижения земли будет огромной. Итак, потенциальная энергия камня определяется как кинетическая энергия, которой он обладал бы, если бы его уронили с высоты небоскреба. Обычно потенциальная

энергия обозначается буквой V.

Тело на высоте небоскреба имеет гравитационную потенциальную энергию, поскольку именно гравитация обеспечивает ускорение тела при падении. Однако существует большое количество потенциальных энергий, каждая из них — со своим математическим выражением. Например, потенциальная энергия пружины проявляется после того, как сжатая пружина освобождается. Имеют потенциальную энергию и электрические заряды: два положительных заряда на близком расстоянии отталкиваются, высвобождая кинетическую энергию. Все виды потенциальной энергии трансформируются в кинетическую.

Потенциальная энергия особенно важна, когда речь идет о газах. При низкой плотности и высокой температуре газа его молекулы находятся на очень большом расстоянии друг от друга и движутся очень быстро, поэтому потенциальная энергия каждой из них, показывающая степень взаимодействия молекул, очень мала.

Однако если газ остынет, взаимодействие между молекулами станет значительным, то есть потенциальная энергия каждой молекулы возрастает и сравнится с кинетической. Чтобы реализовать это понимание, для изучения газовой динамики потребовались новые математические инструменты.

* * *

ЭНЕРГИЯ И РАБОТА

Современное понятие энергии определяется в зависимости от другой физической величины — работы. Физическая «работа» отличается от повседневной «работы», но оба понятия связаны между собой. Предположим, мы хотим измерить, сколько работы совершает человек за минуту. Поскольку мы говорим о физике, ограничимся физической работой, например передвижением объекта из одной точки в другую.

Сравним работу, которую выполняют два человека, задача которых — отнести коробки на склад. Очевидно, что чем больше вес коробки, тем больше работы совершил человек; то есть работа пропорциональна приложенной силе. Кроме того, чем больше расстояние, на которое переносится коробка, тем больше работа. Таким образом, работа пропорциональна расстоянию. На основании этих идей мы можем определить физическую работу как произведение силы на расстояние:

W = Fd,

где — «работа» (от английского work), F — сила и d — расстояние.

Энергию можно определить как работу, проделанную телом при отсутствии трения. Например, вся работа, необходимая для перемещения коробки по ледовому катку (если предположить, что трение отсутствует), превращается в кинетическую энергию. Работа, необходимая для того, чтобы поднять коробку на крышу небоскреба, равна ее потенциальной энергии. Значит, энергия — это способность тела осуществлять работу. Эта простая формулировка дает нам инструмент для определения потенциальной энергии тела в любой ситуации: потенциальная энергия — это работа, необходимая для перемещения из одной точки в другую. Именно так математически выглядит выражение для расчета электрической и гравитационной потенциальной энергии.

* * *

Кажется, что любое тело движется так, будто хочет уменьшить свою потенциальную энергию. Например, камни всегда падают, а не движутся вверх. Более того: камень движется в область меньшей энергии по определенному пути, который позволяет ему потерять потенциальную энергию максимально быстро. Как показано на рисунке, камень будет следовать по прямой линии вниз: это самый короткий путь к нижней точке, в которой у него минимальная потенциальная энергия.

Различные пути, по которым камень мог бы достигнуть земли. Все они длиннее, чем его настоящий путь — самый короткий.

Великий математик Леонард Эйлер (1707–1783) использовал этот факт для формулировки новой версии принципа наименьшего действия; он предложил считать, что тела стремятся потерять потенциальную энергию с максимально возможной скоростью. Принцип Эйлера привел к современной идее о том, что система частиц всегда стремится к состоянию с наименьшей потенциальной энергией. Этот простой тезис способен объяснить магнетизм железа, структуру молекулы воды, а также помочь в изучении поведения газа при низких температурах.

Однако принцип Эйлера в своем первоначальном виде работал не везде. Если подбросить камень, он сначала получит потенциальную

энергию, а лишь затем начнет ее терять. Кажется, что при определении траектории частицы на нее воздействует не только потенциальная энергия, но и кинетическая.

Окончательная формулировка принципа наименьшего действия принадлежит Лагранжу и Гамильтону. С одной стороны, эти ученые переформулировали принцип Эйлера таким образом, чтобы он работал во всех случаях. С другой стороны, Лагранж и Гамильтон разработали новые математические методы для решения уравнений, которые следуют из этого принципа.

Ими было введено математическое понятие, названное лагранжианом, которому, по иронии судьбы, определение дал Гамильтон. Лагранжиан — это просто разница между кинетической и потенциальной энергией. Если мы обозначим лагранжиан через L, кинетическую энергию — через Т, а потенциальную — через V, то лагранжиан можно вычислить следующим образом:

= T — V.

Значение лагранжиана различно для каждого промежутка времени движения частицы. В случае с камнем, брошенным вверх, его кинетическая энергия сначала уменьшается, пока не достигнет верхней точки, где становится нулевой, а затем снова увеличивается по мере того, как камень падает. Потенциальная энергия, в свою очередь, увеличивается, пока камень поднимается, а во время падения уменьшается.

* * *

ЖОЗЕФ ЛУИ ЛАГРАНЖ (1736–1813)

Он был одним из самых значительных математиков XVIII века. Среди заслуг Лагранжа — разработка вариационного исчисления, математического инструмента, позволяющего найти функцию, на которой заданный функционал достигает максимального или минимального значения. Методы Лагранжа до сих пор широко используются в физике, математике и даже в экономике, где найти максимальные значения некоторых величин, таких как выгода, очень важно. Помимо вклада в базовую науку, Лагранж стал одним из инициаторов внедрения метрической системы. Считается, что именно ему принадлежит идея выбрать килограмм и метр в качестве международных единиц.

Несмотря на закрытый характер, Лагранж пользовался большим признанием: он провел два десятилетия в Берлине, где Фридрих II Великий (1712–1786) регулярно обращался к нему за советами. После смерти монарха математик переехал в Париж, и его авторитет сохранился даже в период революции, в то время как другим ученым, таким как Антуан Лавуазье (1743–1794), повезло гораздо меньше. За два дня до смерти Лагранжа Наполеон наградил его Великим крестом имперского ордена Собрания. Похоронен ученый в Пантеоне, его могила открыта для посещений.

* * *

Лагранжиан можно вычислить в каждый промежуток времени, вычтя потенциальную энергию из кинетической. Все три случая показаны на графиках.

Этот математический объект оказался ключевым элементом, которого не хватало для дополнения принципа наименьшего действия, потому что его можно было использовать, имея в виду как кинетическую, так и потенциальную энергию. В новой формулировке утверждалось, что любое тело движется таким образом, что лагранжиан уменьшается как можно быстрее. За этой внешней простотой кроется удивительная способность прогнозировать движение любой классической системы, то есть любой системы, для описания которой нет необходимости прибегать к законам квантовой механики.

Кроме того, формула Лагранжа имеет еще два преимущества: во-первых, она подходит для любой системы координат, и это решило проблему уравнений Ньютона, применимых только для прямоугольной системы координат; во-вторых, эту формулу совершенно свободно можно применить к произвольному числу частиц.

Новая математика открыла для физиков новые возможности, поскольку теперь ученые уже не были ограничены изучением только простых систем, но могли обратить внимание на до сих пор не решенные задачи. Хотя формулировка Лагранжа соответствует законам Ньютона, на практике она позволяет максимально расширить действие этих законов. Изучение таких сложных систем, как газ, было бы невозможным без лагранжевой механики.

Поделиться с друзьями: