Путешествие от частицы до Вселенной. Математика газовой динамики
Шрифт:
И все же, несмотря на всю свою важность, лагранжиан — это только инструмент, позволяющий узнать положение и скорость частицы. Следуя принципу наименьшего действия, траектория тела должна быть такой, чтобы лагранжиан уменьшался как можно быстрее. Но как найти эту траекторию? Одним из способов могло бы стать сравнение нескольких траекторий и выбор той, при которой лагранжиан уменьшается быстрее. К сожалению, количество существующих возможностей очень велико, и до изобретения компьютера не стоило и думать об этом методе. Для решения задачи Лагранжу пришлось воспользоваться вариационным исчислением — совершенно новым математическим инструментом.
Совместная работа
Можно представить метод Лагранжа следующим образом: берется некая траектория и слегка изменяется; затем исследуются похожие траектории и вычисляется, как уменьшается лагранжиан для всех них до тех пор, пока не находится подходящая траектория. На следующем графике можно наблюдать различные траектории частицы.
* * *
МАТЕМАТИЧЕСКАЯ ФОРМУЛИРОВКА ПРИНЦИПА НАИМЕНЬШЕГО ДЕЙСТВИЯ
Принцип наименьшего действия гласит, что тела движутся таким образом, что лагранжиан уменьшается как можно быстрее. Однако существует и более точная формулировка, основанная на такой величине, как действие.
Предположим, что мы знаем, как развивается лагранжиан частицы во времени. Сначала представим это развитие графически.
Действие определяется как область под кривой лагранжиана между исходным моментом (t) и конечным моментом (t1) движения за определенное время. То есть действие — это закрашенная на рисунке область.
Принцип наименьшего действия можно изложить следующим образом: тело движется так, что действие, связанное с его движением, минимально.
Вычисление площади под кривой может потребовать использования анализа бесконечно малых — области математики, разработанной независимо друг от друга Ньютоном и Лейбницем именно для решения физических задач.
* * *
Лагранж действительно воспользовался этой идеей для того, чтобы найти общую форму, которая позволила бы ему определить траекторию, не останавливаясь на вычислении уменьшения лагранжиана.
Теоретически уравнения Эйлера — Лагранжа могли бы использоваться для определения траектории каждой частицы газа, поскольку, как уже было сказано, их легко можно расширить на произвольное число частиц. Однако на практике из-за огромного количества частиц решить эти уравнения невозможно без помощи мощного компьютера.
Одно из основных преимуществ лагранжевой механики состоит в том, что она была определена в терминах обобщенных координат. В отличие от законов Ньютона, она не предполагала использование прямоугольной системы координат, а была справедлива для любых других систем, подходящих для изучения проблемы. Обобщенные координаты необязательно должны быть выражены единицами измерения длины; как мы видели раньше, одна из них может быть углом. Главное требование к таким координатам — они должны быть достаточными для того, чтобы
определить положение частицы в некоторой области пространства.Чтобы отличить обобщенные координаты от прямоугольной системы координат, оси которых названы х, у, z, используется буква q с индексами — q1, q2 или q3. Это очень удобно, когда рассматриваются системы с несколькими частицами, как в случае с газом.
В предыдущем примере с полярными координатами, где положение на плоскости задано расстоянием до центра и углом, можно определить:
q1 = r
q2 =
Другой пример — сферические координаты.
В этом случае для определения положения в пространстве нужны три числа: расстояние до центра и два угла, как показано на рисунке. В этом случае получаются следующие обобщенные координаты:
q1 = r
q2 =
q3 = ф
Существует неограниченное количество вариантов, каждый из которых подходит для разных задач. Преимущество формулировки Лагранжа заключается в том, что координаты подстраиваются к задаче, а не наоборот.
Числовое значение лагранжиана определяется не только положением частицы, но и ее скоростью, квадрату которой пропорциональна кинетическая энергия. Скорость частицы определяется как изменение положения за единицу времени: если известно положение тела в каждый момент, известна и его скорость.
Зависимость лагранжиана от положения тела и, в свою очередь, от его изменения, усложняла решение уравнений. Если бы лагранжиан зависел только от положения, проводить вычисления было бы намного легче.
Уильям Роуэн Гамильтон предложил решение этой проблемы. Его идея заключалась в том, чтобы переформулировать уравнения Эйлера — Лагранжа таким образом, чтобы они зависели только от положения тела, но не от его скорости. Для этого оказалось необходимым понятие импульса.
Импульс — это мера того, насколько сложно остановить тело. Чем тяжелее тело и чем быстрее оно движется, тем больше усилий необходимо, чтобы его затормозить. Поскольку импульс растет как вместе с массой, так и вместе со скоростью, он определяется как произведение обеих величин. Импульс обозначается буквой р и математически выражается как:
р = m·v,
где m — масса, а v — скорость.
Понятие импульса было известно с древности, хотя современную трактовку он получил от Ньютона, который говорил, что импульс представляет собой количество движения. На основании законов Ньютона можно доказать, что для системы, на которую не воздействуют внешние силы, количество движения остается постоянным. Если мы сложим импульсы каждой частицы в разные моменты времени и сравним результаты, то увидим, что суммы импульсов равны.