Рассказы о математике с примерами на языках Python и C
Шрифт:
Мы узнали разряды числа, получающегося в результате:
a1 = a - c - 1, b1 = 9, c1 = 10 - a + c
– Добавляем число в обратном порядке:
a1b1c1 + c1b1a1 = 100 * (a - c - 1) + 10 * 9 + (10 - a + c) + 100* (10 - a + c) + 10 * 9 + a - c - 1
Если раскрыть все скобки и сократить лишнее, в остатке будет 1089.
3. Число Пи
Вобьем в стену гвоздь, привяжем к нему веревку с карандашом, начертим окружность. Как вычислить длину окружности? Сегодня ответ знает каждый школьник — с помощью числа Пи. Число Пи — несомненно, одна из основных констант мироздания, значение которой было известно еще в древности. Оно используется
Сегодня достаточно нажать одну кнопку на калькуляторе, чтобы увидеть его значение: Pi = 3,1415926535… Однако, за этими цифрами скрывается многовековая история. Что такое число Пи? Это отношение длины окружности к ее диаметру. То что это константа, не зависящая от самой длины окружности, знали еще в древности. Но чему она равна? Есть ли у этого числа какая-то внутренняя структура, неизвестная закономерность? Узнать это хотели многие. Самый простой и очевидный способ — взять и измерить. Примерно так вероятно и поступали в древности, точность разумеется была невысокой. Еще в древнем Вавилоне значение числа Пи было известно как 25/8. Затем Архимед предложил первый математический метод вычисления числа Пи, с помощью расчета вписанных в круг многоугольников. Это позволяло вычислять значение не «напрямую», с циркулем и линейкой, а математически, что обеспечивало гораздо большую точность. И наконец в 3-м веке нашей эры китайский математик Лю Хуэй придумал первый итерационный алгоритм — алгоритм, в котором число вычисляется не одной формулой, а последовательностью шагов (итераций), где каждая последующая итерация увеличивает точность. С помощью своего метода Лю Хуэй получил Пи с точностью 5 знаков: = 3,1416. Дальнейшее увеличение точности заняло сотни лет. Математик из Ирана Джамшид ибн Мас‘уд ибн Махмуд Гияс ад-Дин ал-Каши в 15-м веке вычислил число Пи с точностью до 16 знаков, а в 17-м веке голландский математик Лудольф вычислил 32 знака числа Пи. В 19-м веке англичанин Вильям Шенкс, потратив 20 лет, вычислил Пи до 707 знака, однако он так и не узнал, что в 520-м знаке допустил ошибку и все последние годы вычислений оказались напрасны (в итерационных алгоритмах хоть одна ошибка делает все дальнейшие шаги бесполезными).
Что мы знаем о числе Пи сегодня? Действительно, это число весьма интересно:
– Число Пи является иррациональным: оно не может быть выражено с помощью дроби вида m/n. Это было доказано только в 1761 году.
– Число Пи является трансцендентным: оно не является корнем какого-либо уравнения с целочисленными коэффициентами. Это было доказано в 1882 году.
– Число Пи является бесконечным.
– Интересное следствие предыдущего пункта: в числе Пи можно найти практически любое число, например свой собственный номер телефона, вопрос лишь в длине последовательности которую придется просмотреть. Можно подтвердить, что так и есть: скачав архив с 10 миллионами знаков числа Пи, я нашел в нем свой номер телефона, номер телефона квартиры где я родился, и номер телефона своей супруги. Но разумеется, никакой «магии» тут нет, лишь теория вероятности. Можно взять любую другую случайную последовательность чисел такой же длины, в ней также найдутся любые заданные числа.
И наконец, перейдем к формулам вычисления Пи, т. к. именно в них можно увидеть красоту числовых взаимосвязей — то, чем интересна математика.
Формула Лю-Хуэя (3й век):
Формула Мадхавы-Лейбница (15 век):
Формула Валлиса (17 век):
Формула Мэчина (18 век):
Попробуем вычислить число Пи по второй формуле. Для этого напишем простую программу на языке Python:
Запустим программу
в любом онлайн-компиляторе языка Питон (например. Получаем результат:
Как можно видеть, сделав 32 шага алгоритма, мы получили лишь 2 точных знака. Видно, что алгоритм работает, но количество вычислений весьма велико. Как известно, в 15-м веке индийский астроном и математик Мадхава использовал более точную формулу, получив точность числа Пи в 11 знаков:
Попробуем воспроизвести ее в виде программы, чтобы примерно оценить объем вычислений.
Первым шагом необходимо вычислить 12. Возникает резонный вопрос — как это сделать? Оказывается, уже в Вавилоне был известен метод вычисления квадратного корня, который сейчас так и называется «вавилонским». Суть его в вычислении S по простой формуле:
Здесь x0 — любое приближенное значение, например для 12 можно взять 3.
Запишем формулу в виде программы:
Результаты весьма интересны:
Шаг | Значение | Погрешность |
1 | 3.5 | 0.25 |
2 | 3.464285714285714 | 0.00127 |
3 | 3.464101620029455 | 3.3890E-8 |
4 | 3.464101615137754 | 2.392873369E-17 |