Секреты долголетия
Шрифт:
Глава 8. Теория накопления мутаций
Элевационная теория В. М. Дильмана не могла объяснить того, что же являлось причиной повышения гипоталамического порога, который лежит в основе болезней старения: гиперадаптоза, климакса и ожирения.
Как оказалось, процессы старения, или возрастные изменения деятельности органов и систем, развиваются на клеточном уровне и могут быть объяснены с точки зрения соответствующих молекулярно-генетических теорий [13].
Теория старения в результате накопления мутаций впервые была выдвинута в 1954 году физиком Лео Сциллардом, который пришёл к этому выводу, наблюдая за действием радиации на людей и на животных, сокращавшим их жизнь. Радиация вызывает множественные мутации ДНК, а также ускоряет появление таких признаков старения, как седина и раковые опухоли. Из этого Сциллард сделал вывод, что именно мутации
Вместе с тем было показано, что существует специальная система репарации – восстановления повреждённой ДНК, обеспечивающая относительную прочность её структуры и надёжность в системе передачи наследственной информации. В опытах на животных показана связь между активностью систем репарации ДНК и продолжительностью жизни. Предполагается, что происходит ослабление системы репарации при старении организма. Роль репарации отчётливо выступает во многих случаях наследственного преждевременного старения: прогерии, синдрома Тернера, некоторых формах болезни Дауна и др. Всё же, как считает большинство исследователей, эти репарации недостаточны, и они не приводят к стопроцентному исправлению повреждений.
По мнению некоторых учёных, старение, обусловленное мутациями ДНК, не так серьёзно, как старение, вызванное неисправимыми повреждениями РНК (рибонуклеиновой кислоты), белков и ферментов. Как известно, клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть в результате синтеза РНК на матрице ДНК, осуществляемого специальными ферментами – РНК-полимеразами. Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией. Трансляция – это синтез белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.
Доктор Л. Оргел (1963) предположил, что ошибки в синтезе РНК и белков приводят к старению клеток в результате, как он это назвал, «катастрофы ошибок». Каждая молекула РНК, считанная с ДНК, ответственна за синтез множества копий определённого фермента; РНК служит матрицей, с которой делается множество идентичных копий молекулы белка.
При дефектной РНК каждая белковая молекула или копия будет также дефектна и не сможет эффективно участвовать в реакциях обмена веществ. Кроме того, некоторые ферменты участвуют в производстве белков на базе «матричной» РНК, а другие осуществляют синтез РНК на матрице ДНК. Значит, если ошибка вкралась в структуру РНК или белка, она будет производить всё более ущербные матрицы, что приведёт в конечном итоге к кумулятивному эффекту – лавинообразному накоплению ошибок и к последней катастрофе – смерти.
Учёные действительно обнаружили, что действие ферментов из культуры старых человеческих клеток ненормально: двадцать пять процентов таких ферментов дефектны, что служит подтверждением «теории катастрофы ошибок» Оргела. В настоящее время проводятся работы по предотвращению старения, вызванного накоплением ошибок. Один из способов, который предложен А. Комфортом, заключается в замедлении скорости процессов обмена веществ в клетках, что может уменьшить вероятность возникновения ошибки. Этого можно добиться понижением температуры тела, в результате чего жизнь рыб и черепах действительно удлинялась.
Глава 9. Теломерная теория старения
В 1961 году доктор Леонард Хейфлик опубликовал очень интересные результаты своих экспериментов по делению клеток, которые легли в основу так называемой теории предельного деления клеток, или теории клеточной смерти [15]. Как известно, в человеческом организме существует около трёх трлн клеток, из которых состоят все системы и органы человека. Клетки постоянно делятся, на смену старым приходят новые, благодаря чему наш организм имеет возможность обновляться и восстанавливаться. За определённый отрезок жизни каждый орган человека несколько раз как бы рождается заново, то есть становится вновь молодым. Однако эта способность к обновлению с возрастом постепенно затухает. Доктор Хейфлик заметил, что как лёгочные, так и соматические клетки отмирают после того, как они поделились строго определённое количество раз. Он предположил, что в клетках существует определённый молекулярный счётчик, который фиксирует то, сколько делений уже было сделано, и не даёт клетке делиться сверх определённого генетически заданного предела.
В 1969–1977
годах учёный продолжил свои исследования, но в этот раз уже на клетках человеческого эмбриона. Хейфлик установил, что основные клетки соединительной ткани, фибробласты, могут делиться примерно пятьдесят плюс-минус десять раз, после чего процесс деления прекращается. Причём у новорождённых клетки могут делиться в три раза дольше, чем у стариков. И даже в культуре ткани вне организма клетки делятся тоже не больше пятидесяти раз, после чего они отмирают.Учёный видоизменил эксперимент и использовал клеточные культуры, которые были заморожены после того, как они уже разделились двадцать пять раз. После оттаивания клетки продолжали делиться, пока не достигли предела в пятьдесят делений, после чего погибли. Когда клетки приближались к своему пределу деления, который получил название «порог Хейфлика», то они напоминали старую ткань с возрастными пигментами, как, например, в постаревших клетках сердца или нервной системы. Гибель клеток или ослабление функции в тех клетках, которые не подвержены делению, приводили к ослаблению отдельных органов и всего организма. В результате утраты способности к обновлению организм не может восстановиться, и его органы и системы необратимо стареют. Оставалось неясным, от чего зависит вышеописанный предел деления, что ограничивает дальнейшее деление клеток.
Для объяснения экспериментальных данных Леонарда Хейфлика в 1971 году русский биолог Алексей Матвеевич Оловников выдвинул теорию маргинотомии – отсчёта клеточных делений и старения вследствие недорепликации последовательностей ДНК на концах хромосом (теломерных участков). Теория предполагала, что «нестарение» бактерий обусловлено кольцевой формой ДНК, а теломерные последовательности в стволовых и раковых клетках защищены благодаря постоянному – при каждом делении клетки – удлинению особым ферментом – тандем-ДНК-полимеразой (современное название – теломераза). В последующих двух статьях (1972, 1973) в русской и англоязычной печати учёный подробно рассмотрел разные биологические следствия своей гипотезы, в том числе применительно к объяснению старения, канцерогенеза и иммунных реакций [9].
Таким образом, А. М. Оловников высказал гениальную гипотезу, что ограниченное количество делений клетки может быть связано с механизмом укорачивания ДНК. У хромосом имеются особые концевые участки, теломеры, которые после каждого удвоения хромосом становятся немного короче и в какой-то момент укорачиваются настолько, что клетка уже не может больше делиться. Она постепенно теряет жизнеспособность, и именно в этом, согласно теломерной теории, состоит старение клеток. А. М. Оловникова его оппоненты называли «гением одной статьи». В обзорной статье, анализирующей механизмы присуждения международной Нобелевской премии, с горечью констатируется, что Россия известна тем, что разбрасывается гениальными идеями, которые на лету подхватываются зарубежными будущими лауреатами этой престижной премии [4].
Действительно, в 1985 году американские исследователи Кэрол Грейдер и Элизабет Блэкбёрн подтвердили идею А. М. Оловникова и выявили в клетках теломеразу, а в 1998 году при помощи теломеразы им удалось «омолодить» культуру клеток, за что в 2009 году этим исследователям была присуждена Нобелевская премия по медицине и физиологии в десять миллионов шведских крон (девятьсот семьдесят пять тысяч евро).
Таким образом, теория А. М. Оловникова получила блестящее подтверждение. Установлено, что фермент теломераза, который восстанавливает концы ДНК, способен достраивать укороченные концы хромосомы в клетках опухолей, что делает их бессмертными. Поэтому предел в пятьдесят делений справедлив не для всех клеток – раковые, а также стволовые клетки могут делиться бесчисленное количество раз. Этот фермент всякий раз заводит внутренние часы заново при слиянии женской и мужской половых клеток. Благодаря ему дети проживают свой срок сполна, а не получают в наследство кусок жизни, как это, например, произошло с клоном овечки Долли.
Позднее А. М. Оловников пришёл к выводу, что данная теория не объясняет полностью причины старения, и внёс в неё уточнения. Он предложил новую редусомную теорию старения. Редусома – это маленькая ядерная частица, располагающаяся в субтеломерных частях хромосомы. Оловников считал, что линейная молекула ДНК редусомы постепенно укорачивается из-за уменьшения её линейной молекулы ДНК, покрытой белками, что приводит к уменьшению содержащихся в ней генов. Именно это укорочение молекул ДНК редусомы является отсчётом биологического времени и причиной старения. Однако эта последняя теория не получила того же одобрения со стороны учёных-геронтологов, как теломерная теория.