Схемотехника аналоговых электронных устройств
Шрифт:
F = (Pс/Pш)вх/(Pс/PΣш)вых
F,dB = 10lgF
В диапазоне СВЧ находит применение оценка шумовых свойств УУ посредством определения шумовой температуры системы Tс:
Tс = T0(F – 1),
где T0 —
Для многокаскадных УУ (каскады включены последовательно):
FΣ = F1 + (F2–1)/Kp1 + (F3–1)/Kp1Kp2 + …
TсΣ = Tс1 + (Tс2–1)/Kp1 + (Tс3–1)/Kp1Kp2 + …
где Kp1, Kp2 и т.д. — номинальные коэффициенты усиления по мощности каскадов усилителя.
◆ Амплитудная характеристика и динамический диапазон УУ.
Амплитудная характеристика усилителя представлена на рис. 2.6.
Рисунок 2.6. АХ УУ
Динамическим диапазоном входного сигнала усилителя Dвх называют отношение Uвх.max (при заданном уровне нелинейных искажений) к Uвх.min (при заданном отношении сигнал/шум на входе):
Dвх = Uвх.max/Uвх.min
Dвх,dB = 20lgDвх
В зависимости от назначения УУ возможна оценка динамического диапазона по выходному сигналу, гармоническим и комбинационным составляющим и др.
Некоторые УУ (УПТ, ОУ и т.д.) могут характеризоваться другими специфическими показателями, которые будут рассмотрены по мере необходимости.
2.3. Методы анализа линейных усилительных каскадов в частотной области
Большинство соотношений, приведенных в данном пособии, получено на основе обобщенного метода узловых потенциалов (ОМУП) [3]. При использовании ОМУП схема в целом заменяется матрицей эквивалентных проводимостей, отображающей как конфигурацию, так и свойства некоторой линейной
схемы, аппроксимирующей реальную схему. Матрица проводимостей составляется на основе формальных правил [3]. При этом усилительные элементы представляются в виде четырехполюсников (подсхем), описываемых эквивалентными Y-параметрами. Выбор Y-параметров активных элементов в качестве основных обусловлен их хорошей стыковкой с выбранным методом анализа. При наличии других параметров активных элементов, возможен их пересчет в Y-параметры [3].При использовании ОМУП анализ состоит в следующем:
◆ составляют определенную матрицу проводимостей схемы [3];
◆ вычисляют определитель Δ и соответствующие алгебраические дополнения Δij;
◆ определяют (при необходимости) эквивалентные четырехполюсные Y-параметры схемы;
◆ определяют вторичные параметры усилительного каскада.
Так как обычно УУ имеют общий узел между входом и выходом, то, согласно [3], их первичные и вторичные параметры определяются следующим образом:
Yij = Δij / Δii,jj,
Zij = Δij / Δ,
Kij = Δij / Δii.
где i, j — номера узлов, между которыми определяются параметры; Δii,jj — двойное алгебраическое дополнение.
По практическим выражениям, получаемым путем упрощения вышеприведенных выражений, вычисляют необходимые параметры усилительного каскада, например:
Yвх = Gвх + jωCвх,
Yвых = Gвых + jωCвых,
K(jω) = K0/(1 + jωτ).
где t — постоянная времени цепи, Gвх, Gвых — низкочастотные значения входной и выходной проводимости.
Полученные соотношения позволяют с приемлемой точностью проводить эскизный расчет усилительных каскадов. Результаты эскизного расчета могут быть использованы в качестве исходных при проведении машинного моделирования и оптимизации. Методы машинного расчета УУ приведены в [4].
2.4. Активные элементы УУ
2.4.1. Биполярные транзисторы
Биполярными транзисторами (БТ) называют полупроводниковые приборы с двумя (или более) взаимодействующими p-n-переходами и тремя (или более) выводами, усилительные свойства которых обусловлены явлениями инжекции и экстракции не основных носителей заряда.
Для определения малосигнальных Y-параметров БТ используют их эквивалентные схемы. Из множества разнообразных эквивалентных схем наиболее точно физическую структуру БТ отражает малосигнальная физическая Т-образная схема. Для целей эскизного проектирования, при использовании транзисторов до (0,2...0,3) fT (fT — граничная частота усиления транзистора с ОЭ) возможно использование упрощенных эквивалентных моделей транзисторов, параметры элементов эквивалентных схем которых легко определяются на основе справочных данных. Упрощенная эквивалентная схема биполярного транзистора приведена на рис. 2.7.