Схемотехника аналоговых электронных устройств
Шрифт:
Постоянную времени каскада для удобства анализа представим так:
τв = τ + τ1 + τ2,
где τ — постоянная времени транзистора (
τ1 — постоянная времени выходной цепи транзистора,
τ1 = S0CкrбRэкв;
τ2 — постоянная времени нагрузки,
τ2 = CнRэкв.
Входную
где Cвх.дин — входная динамическая емкость каскада,
Cвх.дин ≈ Cэд + (1 + K0)Cк = τ/rб + (1 + K0)Cк.
Выходная проводимость определится как
где Cвых — выходная емкость каскада, Cвых=CкS0rб.
Выражения для относительного коэффициента передачи Yв и коэффициента частотных искажений Mв в комментариях не нуждаются:
φв = –arctg ωτв,
Mв = 1/Yв
По приведенным выражениям строится АЧХ и ФЧХ каскада в области ВЧ.
Связь коэффициента частотных искажений Mв и fв выражается как
В n-каскадном усилителе с одинаковыми каскадами наблюдается эффект сужения полосы рабочих частот, который можно скомпенсировать увеличением верхней граничной частоты каскадов fвi до
Эквивалентная схема каскада в области НЧ приведена на рисунке 2.15.
Рисунок 2.15. Схема каскада с ОЭ в области НЧ
Поведение АЧХ в этой области определяется влиянием разделительных (Cр1, Cр2) и блокировочных (Cэ) емкостей.
Влияние этих емкостей на коэффициент частотных искажений в области НЧ Mн каскада можно определить отдельно, используя принцип суперпозиции. Общий коэффициент частотных искажений в области НЧ определится как
где N — число цепей формирующих АЧХ в области НЧ.
Рассмотрим влияние Cр2 на АЧХ каскада. Проведя анализ согласно методике раздела 2.4, получим выражение для коэффициента передачи в области НЧ:
Kн = K0/(1 + 1/jωτн),
где τн —
постоянная времени разделительной цепи в области НЧ.Постоянная времени разделительных цепей в общем случае может быть определена по формуле
τн = Cр(RЛ + RП),
где RЛ — эквивалентное сопротивление, стоящее слева от Cр (обычно это выходное сопротивление предыдущего каскада или внутреннее сопротивление источника сигнала), RП — эквивалентное сопротивление, стоящее справа от Cр (обычно это входное сопротивление следующего каскада или сопротивление нагрузки).
Для рассматриваемой цепи постоянная времени равна:
τн2 = Cр2(Rк + Rн).
Выражения для относительного коэффициента передачи и коэффициента частотных искажений в области НЧ таковы:
φн = –arctg ωτн,
Mн = 1/Yвн
и в комментариях не нуждаются. По этим выражениям оценивается влияние конкретной цепи на АЧХ и ФЧХ каскада в области НЧ.
Связь между коэффициентом частотных искажений и нижней граничной частотой выражается формулой
Аналогичным образом учитывается влияние других разделительных и блокировочных цепей, только для блокировочной эмиттерной цепи постоянная времени приблизительно оценивается величиной τнэ≈Cэ/S0 т.к. сопротивление БТ со стороны эмиттера приблизительно равно 1/S0 (см. подраздел 2.4.1), а влиянием Rэ в большинстве случаев можно пренебречь, т.к. обычно 1/S0<<Rэ.
Результирующую АЧХ и ФЧХ каскада в области НЧ можно построить, используя уже упоминавшийся принцип суперпозиции.
В n-каскадном усилителе с одинаковыми каскадами наблюдается эффект сужения полосы рабочих частот, который в области НЧ можно скомпенсировать уменьшением нижней граничной частоты каскадов до
2.6. Термостабилизация режима каскада на биполярном транзисторе
Параметры БТ в значительной мере подвержены влиянию внешних факторов (температуры, радиации и др.). В то же время, одним из основных параметров усилительного каскада является его стабильность. Прежде всего, важно, чтобы в усилителе обеспечивался стабильный режим покоя.
Проанализируем вопрос влияния температуры на стабильность режима покоя БТ, конкретно — Iк0.
Существуют три основных фактора, влияющих на изменении Iк0 под действием температуры: при увеличении температуры, во-первых, увеличивается напряжение Uбэ0, во-вторых, обратный ток коллекторного перехода Iкбо, и, в третьих, возрастает коэффициент H21э.