Чтение онлайн

ЖАНРЫ

Шрифт:

Так, если шар делящегося вещества окружить замедлителем, многие нейтроны покинут замедлитель или будут поглощены в нем, но будут и такие, которые, потеряв свою энергию, вернутся в шар («отразятся») и с гораздо большей вероятностью вызовут акты деления (рис. 3.4). В процессе обмена нейтронами между замедлителем и делящимся веществом установится усредненная, пониженная в сравнении с той, с которой они рождаются, энергия нейтронов, вызывающих деление. Если шар окружить слоем бериллия толщиной 25 мм, то можно сэкономить 20 кг U235 и все равно достичь критического состояния сборки. Заплатить за такую экономию придется временем: каждое последующее поколение нейтронов, прежде чем вызвать деление, должно сначала замедлиться. Эта задержка уменьшает число поколений нейтронов, рождающихся в единицу времени, а значит, энерговыделение «затягивается». Чем меньше делящегося вещества в сборке, тем больше требуется замедлителя для развития в ней цепной реакции, а деление идет на все более низкоэнергетичных нейтронах. В предельном случае, когда критичность достигается только на совсем уж тепловых, например, в растворе солей урана в воде [42] , масса сборок —

сотни граммов, но раствор просто периодически вскипает. Выделяющиеся в объеме пузырьки пара уменьшают среднюю плотность делящегося вещества, и цепная реакция прекращается. Затем пузырьки, всплывая, покидают жидкость и вспышка делений повторяется. Можно, конечно, закупорить сосуд, и тогда пар высокого давления разорвет его. Это будет типичный тепловой взрыв, опасность которого заключается не в мощности, а в радиационных эффектах.

42

Вода — хороший замедлитель, поскольку содержит много ядер водорода, почти равных нейтронам по массе. Чтобы термализоваться, быстрому нейтрону требуется поучаствовать, в среднем, менее чем в 19-ти столкновениях с ядрами водорода, а с ядрами бериллия — впятеро больше. На первые столкновения быстрые (МэВные) нейтроны затрачивают ничтожное время, так что длительность термализации определяется в основном последними столкновениями, когда скорости нейтронов приближаются к тепловой.

Вот как описан в книге Р. Юнга «Ярче тысячи солнц» закончившийся трагично эксперимент доктора Слотина, правда, не с ураном, а другим делящимся веществом — плутонием (рис. 3.5).

Рис. 3.5
Слева: приспособления для отливки заготовки заряда из плутония. Правее: так обращался с содержащей плутоний сборкой доктор Слотин (фотография взята из отчета комиссии, расследовавшей одну из первых в истории ядерных аварий). Снимок справа вверху дает представление о такой аварии. Сфотографирован образец плутония, правда, не оружейного, как в опыте Слотина, а изотопа с массовым числом 238. Различия в ядерных свойствах «плутониев» даже более велики, чем «уранов»: в Pu238 не может возникнуть цепная реакция деления, но другие самопроизвольные ядерные реакции протекают столь интенсивно, что металлический Pu238 всегда пребывает в раскаленном состоянии; оружейный Pu239 сравнительно малоактивен (хотя его температура и превышает комнатную на несколько градусов), зато — способен к цепной реакции, которая при определенных условиях может быть взрывной. В опыте Слотина она такой не стала, но Pu239 раскалился, став на несколько секунд похожим внешне на Pu238. Еще один «беспокойный» изотоп — Pu240 — испускает нейтроны спонтанно и на четыре порядка более интенсивно, чем «оружейный» собрат. Высокий «примесный» нейтронный фон не позволяет применять полученный в реакторе плутоний в зарядах ствольного типа (об этом — в конце главы)

«Задача состояла в том, чтобы достигнуть, но не превзойти критической точки самого начала цепной реакции, которую Слотин должен был немедленно прерывать, раздвигая полушария. Если бы он «проскочил» критическую точку или недостаточно быстро прервал начавшуюся реакцию в самом ее начале, то масса превзошла бы критическую величину и последовал бы ядерный взрыв…

…Неожиданно его отвертка соскользнула. Полушария сошлись слишком близко, и масса стала критичной. Мгновенно все помещение наполнилось ослепительным блеском. Слотин вместо того, чтобы укрыться и, возможно, спасти себя, рванул голыми руками оба полушария в разные стороны и прервал тем самым цепную реакцию».

Надеюсь, читателю очевидны «ляпы»: оказывается, человек в состоянии движениями рук прервать ядерный взрыв, а уж если таковой неминуем — может «укрыться» (уж не спрятавшись ли под стол?).

Авторам книги «Критические параметры систем с делящимися веществами и ядерная безопасность» удалось избежать безграмотного пафоса.

«Лос-Аламос, 1946 г. Случай неконтролируемой вспышки цепной реакции произошел на сборке, состоящей из плутониевой сферы [43] , облицованной никелем толщиной 0,13 мм (плотность плутония равнялась 15,7 г/см3, общий вес — 6,2 кг), окружаемой бериллиевыми полуоболочками. Экспериментатор, регулируя зазор между полуоболочками отверткой, неожиданно выронил ее. Бериллиевые полуоболочки сомкнулись, что явилось причиной вспышки цепной реакции, в результате которой в сборке произошло 3 ·1015 делений. Физик, проводивший эксперимент, умер через девять дней в результате переоблучения дозой 900 рентген».

43

Ошибка или неточность перевода. Сфера — геометрическое место точек пространства, равноудаленных от центра, то есть — поверхность. Правильно: «шаровой слой».

Оружейник-ядерщик, мельком взглянув на характеристики «сферы», скажет, не раздумывая: сборка была изготовлена для заряда, где одно поколение быстрых нейтронов сменяется другим, более многочисленным, за неимоверно короткое, неуловимое живыми существами время. Не будучи окружена замедлителем, «сфера» была подкритичной, безопасной. В присутствии замедлителя процесс, начавшись либо с нейтрона, рожденного в спонтанных реакциях всегда присутствующих в оружейном плутонии примесных ядер, либо — что менее вероятно — со случайно попавшего в сборку фонового [44] нейтрона, далее происходил на частицах, каждое поколение которых долго замедлялось, и потому не был взрывным. Цепь делений угасла сама, когда сборка раскалилась, а значит — расширилась. Дальнейшие действия физика предотвратили два неприятных последствия: другую вспышку делений после остывания сборки и загрязнение всего окружающего плутонием, который,

раскалившись, мог и сбросить с себя защитную оболочку из никеля [45] .

44

Где бы вы не находились, такие нейтроны присутствуют рядом. Они летят из космоса, образуются в результате ядерных реакций в содержащихся в земле минералах. К счастью, фоновых нейтронов не так уж много.

45

Контакта человека с очень ядовитым плутонием стараются избежать, нанося на детали электролитические покрытия из никеля или золота. Попадание в организм бериллия тоже пользы не принесет.

Вероятно, целью опыта было выяснить, безопасно ли монтировать сборку в заряд, окружая при этом замедляющим нейтроны бериллием. Пошли на жутковатый эксперимент потому, что во все времена далеко не все, что необходимо для реализации новых идей, можно было рассчитать. Упоминание «ослепительного блеска» следует отнести на счет эмоциональной реакции свидетелей аварии. На самом деле, это было неяркое фиолетовое свечение ионизованного гамма квантами воздуха (обычно в такой ситуации ощущается и сильный запах озона).

Важный вывод, который следует из разобранных примеров: излюбленный журналистами параметр — критическая масса — сам по себе не характеризует способность к взрыву. Для одного и того же делящегося вещества критические массы могут отличаться на порядки (в зависимости от его формы, плотности, присутствия замедлителя), причем, даже если такая масса собрана и цепная реакция происходит, взрывной она бывает отнюдь не всегда.

Для некоторых — и весьма важных — задач необходимо избежать не только ядерного взрыва, но и «теплового эксцесса», подобного опыту доктора Слотина. В управляемых реакциях деления значительную роль играют нейтроны запаздывающие.

Рис. 3.6
В верхнем ряду слева — снимок макета ядерного реактора ВВЭР-1000. Активная зона состоит из стержней с обогащенным ураном и стержней с веществом, поглощающим нейтроны (последние служат для регулировки мощности). Стержни омываются водой, которая замедляет нейтроны и служит теплоносителем. Вода циркулирует в активной зоне под высоким давлением и нагреть ее без вскипания можно до значительно большей, чем сотня градусов, температуры, обеспечив тем самым эффективный теплоотвод. Очень горячая вода из активной зоны поступает в теплообменник, где отдает свою энергию и та преобразуется для дальнейшего потребления.
Уран в стержнях (называемых ТВЭЛами — тепловыделяющими элементами, показанными в центре) обогащен «двести тридцать пятым» изотопом на 5 или чуть более процентов, он значительно «беднее», чем оружейный. От реактора получают огромную энергию, но, кроме того, U238 из его топлива не идет «в отвал», а превращается нейтронами в другое делящееся вещество при протекании реакций:
U238 + n -> U239 -> Np239 -> Pu239
Ядерные реакции, продуктом которых является Pu239, в основном заканчиваются через несколько недель после извлечения отработавших ТВЭЛов. Это время они выдерживаются в бассейнах с водой, а их гамма-излучение столь интенсивно, что возбуждает вторичное (черенковское) излучение синеватого цвета в водяной защите (справа). В «отсветивших» ТВЭЛах остается плутоний, который отличается от урана валентностью, что делает возможным его выделение химическими методами.
Выделение энергии при ядерной реакции происходит за счет массы: суммарная масса продуктов реакций меньше, чем ядер, в реакцию вступающих. Офицеры и матросы авианосца «Энтерпрайз» (нижний снимок) выстроилась на полетной палубе, образовав формулу Эйнштейна, связывающую убыль массы («т») реагентов при делении уранового топлива и выделяющуюся при этом энергию («Е»), которой ядерные реакторы обеспечивают их корабль («с» — скорость света). Цифра «40» означает, что все сорок лет службы корабля доказывают справедливость этой формулы. Перезарядка активных зон ядерной энергетической установки авианосца производится раз в три года и обеспечивает дальность плавания более чем в 300000 миль. «Энтерпрайз» вошел в состав ВМС США в 1961 г. и останется в строю до 2013 г. Полное водоизмещение авианосца — 93400 т

…В ядерном реакторе — таком, например, какой обеспечивает энергией огромный корабль (рис. 3.6), — тепловыделение регулируют, вдвигая или выдвигая из активной зоны (той же сборки с делящимся веществом) стержни, содержащие поглощающие нейтроны элементы (кадмий, бор). Но мгновенные нейтроны размножаются слишком быстро — настолько, что затруднительно контролировать рост мощности: скорость введения стержней в активную зону всего лишь на метр (примерно 10 % ее длины) должна быть порядка километров в секунду — немыслимая для механических устройств с их блоками и тросами величина. А при меньших скоростях введения стержней реактор развалится от перегрева. Так и случается при авариях, и все же существует интервал положений стержней, в котором реактор вполне управляем. В этом режиме прирост числа нейтронов (и мощности) происходит за счет запаздывающих нейтронов (мгновенные тоже, конечно, рождаются, но каждое их последующее поколение увеличивается только на количество, соответствующее размножению запаздывающих). Реактор «вынужден ждать», пока долгоживущие осколки выпустят свои нейтроны, и не «идет в разгон» а набирает мощность медленно (проценты в секунду) — так, что прирост ее можно в нужный момент остановить, даже при ручном управлении.

Поделиться с друзьями: