Чтение онлайн

ЖАНРЫ

Сигнал и шум. Почему одни прогнозы сбываются, а другие - нет

Сильвер Нейт

Шрифт:

Рис. 12.3. Схема, отражающая неопределенность в прогнозах глобального потепления

Прежде всего, речь пойдет о том, что Шмидт называет изначальным условием неопределенности, – это краткосрочные факторы, конкурирующие с парниковым сигналом и влияющие на то, как мы ощущаем климат. Парниковый эффект представляет собой долгосрочное явление, и день ото дня или даже год от года его влияние может быть незаметно за другими всевозможными событиями.

Самый очевидный тип неопределенности изначального условия – это обычная погода. Когда дело касается прогнозирования климата, она представляет собой скорее шум, а не сигнал. Текущий прогноз МГЭИК предсказывает, что температуры в течение следующего столетия должны повыситься на 2 °C (или около 4 °F). Это значит, что за десятилетие температура увеличится примерно на 0,2 °C, а за год – на 0,02 °C. Такой сигнал сложно заметить, когда разница дневных и ночных температур может колебаться в пределах 15 °C, а на некоторых широтах – в пределах 30 °C от сезона к сезону.

Так получилось, что всего за несколько

дней до моей встречи со Шмидтом в 2011 г. в Нью-Йорке и других регионах Северо-Востока разразилась довольно необычная октябрьская метель. Высота снежного покрова в Центральном парке, достигающая 33 мм, побила прежний октябрьский рекорд {845} , а в Коннектикуте, Нью-Джерси и Массачусетсе последствия оказались значительно более суровыми – миллионы жителей остались без электричества {846} .

845

«New York Snow: Central Park Sets the October Record from Noreaster», Associated Pressvia Huffington Post, October 29, 2011. http://www.huffingtonpost.com/2011/10/29/new-york-snow-noreaster_n_1065378.html.

846

Anne Barnard and Sarah Maslin Nir, «Cleaning Up After Natures Plays a Trick», New York Times, October 30, 2011. http://www.nytimes.com/2011/10/31/nyregion/october-snowstorm-sows-havoc-on-northeastern-states.html?pagewanted=all.

При этом в том же Центральном парке был установлен и первый температурный рекорд {847} с момента начала измерений в 1869 г. {848} . На рис. 12.4 показано изменение ежемесячной средней температуры, изменяемой в Центральном парке, за столетие с 1912 по 2011 г. На графике наглядно видна смена времен года; температура заметно (но достаточно предсказуемо) меняется с теплой на холодную и наоборот, причем в некоторые годы сильнее, чем в другие. По сравнению с погодой климатический сигнал едва заметен. Однако он существует – в течение этого 100-летнего периода температура в Центральном парке повысилась в среднем на 4 °F (примерно, на 2,5 °C).

847

Вследствие этого информация о температуре, фиксируемой в Центральном парке, представляет собой один из самых старых информационных источников на территории США. Самым старым источником в мире может, пожалуй, считаться информация из британского региона Мидлендс, где она последовательно собирается с 1659 г.

848

«Average Monthly & Annual Temperatures at Central Park», Eastern Regional Headquarters, National Weather Service. http://www.erh.noaa.gov/okx/climate/records/monthannualtemp.html.

Рис. 12.4. Ежемесячные средние температуры, в градусах °F Центральный парк (Нью-Йорк), 1912–011 гг.

Также периодически возникают флуктуации температуры, которые могут длиться от года до десяти лет. Одна из них определяется циклом ENSO (Эль-Ниньо – Южная осцилляция). Этот цикл, развивающийся примерно с трехлетними интервалами {849} , возникает в результате температурных сдвигов в водах тропической части Тихого океана. В годы, когда цикл Эль-Ниньо набирает полную силу, наблюдается более теплая погода в значительной части Северного полушария и снижается активность ураганов в Мексиканском заливе {850} . В годы, когда Тихий океан охлаждается, наблюдается противоположная картина. Кроме этих фактов, мы практически ничего не знаем о цикле ENSO.

849

От пика до пика или от впадины к впадине; цикл проходит от впадины к пику примерно за половину этого времени, или за 18 месяцев.

850

Mark C. Bove, et al., «Effect of El Niсo on U. S. Landfalling Hurricanes, Revisited», Bulletin of the American Meteorological Society, 79, 11 (1998). http://www.aoml.noaa.gov/hrd/Landsea/elnino/.

Другой среднесрочный процесс – это солнечные циклы, в течение которых Солнце излучает чуть больше или чуть меньше тепла. Средняя продолжительность циклов составляет в среднем примерно 11 лет (зачастую цикл рассчитывается по пятнам на солнце, наличие которых коррелирует с более высокими уровнями солнечной активности). Однако эти циклы довольно нерегулярны. Например, солнечный цикл 24, который должен был обеспечить максимум солнечной активности (и, следовательно, более высокую температуру) в 2012 или 2013 гг., несколько запоздал {851} . На самом деле Солнце может «дремать» десятилетиями; возможно, что «минимум Маундера» – период продолжительностью около 70 лет в конце XVII и начале XVIII в., сопровождавшийся незначительной солнечной активностью, мог привести к серьезным похолоданиям в Европе и Северной Америке {852} .

851

Victoria Jaggard, «Sun Headed into Hibernation, Solar Studies Predict», National Geographic News, June 14, 2011. http://news.nationalgeographic.com/news/2011/06/110614-sun-hibernation-solar-cycle-sunspots-space-science/.

852

Sarah Ineson, et al., «Solar Forcing of Winter Climate Variability in the Northern Hemi-sphere», Nature Geoscience 4 (October 9, 2011), pp. 753–757. http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo1282.html.

И наконец,

периодические флуктуации температуры возможны в результате деятельности вулканов, выбрасывающих в атмосферу серу – газ, обладающий антипарниковым эффектом: увеличение концентрации серы в атмосфере может сопровождаться охлаждением планеты. Извержение вулкана Пинатубо в 1991 г. привело к снижению глобальной температуры примерно на 0,2 °C за два года, что эквивалентно парниковому потеплению за период в 10 лет.

Чем больше ваш временной горизонт, тем меньше вы беспокоитесь о среднесрочных эффектах. Они могут доминировать в парниковом сигнале в течение периодов от года до десяти, однако между этими периодами их влияние незначительно.

Однако со временем усиливается влияние другого типа неопределенности, который Шмидт называет неопределенностью сценария. Эта неопределенность связана с уровнем CO2 и других парниковых газов в атмосфере. В краткосрочной перспективе состав атмосферы достаточно предсказуем. Уровень загрязнения атмосферы в результате промышленной деятельности достаточно стабилен, однако CO2 быстро попадает в атмосферу и остается там в течение длительного времени (период его химического полураспада оценивается примерно в 30 лет {853} ). Даже если бы крупные промышленно развитые страны немедленно согласились значительно сократить выбросы CO2, то для снижения темпов его роста в атмосфере (не говоря уже об уменьшении) потребовались бы годы. «Ни вы, ни я не доживем до того момента, когда концентрация диоксида углерода начнет падать, – сказал мне Шмидт. – Этого не увидят и ваши дети». Тем не менее, поскольку климатические модели полагаются на довольно конкретные предположения о содержании CO2 в атмосфере, это может значительно усложнить прогнозы, сделанные на 50 или 100 лет, и сильно повлиять на их результаты в краткосрочной перспективе, Многое зависит от того, как повлияют на выбросы CO2 политические и экономические решения.

853

Berrien Moore II and B. H. Braswell, «The Lifetime of Excess Atmospheric Carbon Dioxide», Global Biogeochemical Cycles, 8, 1 (1994), pp. 23–38. http://www.agu.org/pubs/crossref/1994/93GB03392.shtml.

И, наконец, в моделях имеется структурная неопределенность. Именно этот вид неопределенности вызывает вполне оправданное беспокойство и климатологов, и их критиков, поскольку ей сложнее всего дать количественную оценку. Она связана с тем, насколько хорошо мы понимаем динамику климатической системы и насколько хорошо можем представить ее с математической точки зрения. Структурная неопределенность может немного повыситься со временем, и ошибки в динамических моделях (к которым относятся и климатические) могут усиливать сами себя.

По словам Шмидта, в совокупности эти три типа неопределенности проявлялись на минимальном уровне еще за 20–25 лет до начала климатического прогнозирования. Иными словами, мы можем достаточно определенно знать, сколько CO2 попадет в атмосферу, однако совершенно не представляем, какое влияние будут оказывать ENSO, извержения вулканов и солнечный цикл.

Как это часто бывает, первый отчет МГЭИК, опубликованный в 1990 г., оказался в пределах этого славного 20-летнего периода, равно как и некоторые из ранних прогнозов, сделанных Джеймсом Хансеном в 1980-е гг. Иными словами, пришло время оценить правильность прогнозов. Насколько удачными они оказались?

Температурные рекорды

Для того чтобы оценить правильность предсказания, нужен прежде всего соответствующий инструмент измерения. И здесь климатологам выбирать особо не из чего. Существуют четыре основные организации, выполняющие расчеты глобальных температур на основании данных термометров на наземных и морских станциях по всему миру. Это НАСА {854} (к которой относится GISS [165] {855} ), NOAA [166] {856} (осуществляющая руководство работой Национальной службы погоды) и метеорологические организации в Великобритании {857} и Японии {858} .

854

«Global Land-Ocean Temperature Index in 0.01 Degrees Celsius Base period: 1951–1980», Goddard Institute of Space Studies, NASA. http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt.

165

GISS (Goddard Institute for Space Studies) – Институт космических исследований имени Годдарда.

855

GISS расшифровывается как Goddard Institute of Space Studies (Институт космических исследований Годдарда). Некоторые ученые предпочитают данные НАСА/GISS, поскольку в них лучше учитывается происходящее в Арктике и некоторых других регионах с редко встречающимися станциями контроля за температурой. Это может иметь потенциально больше значение, поскольку потепление в Арктике происходит значительно сильнее, чем в других частях мира.

166

NOAA (National Oceanic and Atmospheric Administration) – Национальная администрация по проблемам океана и атмосферы.

856

Global Temperature Anomalies, National Atmospheric and Oceanic Association. ftp://ftp.ncdc.noaa.gov/pub/data/anomalies/annual.land_ocean%20.90S%20.90N.df_1901-2000mean.dat.

857

Climatic Research Unit, School of Environmental Sciences, University of East Anglia. http://www.cru.uea.ac.uk/cru/data/temperature/hadcrut3gl.txt.

858

Japan Meteorological Agency. http://www.data.kishou.go.jp/climate/cpdinfo/temp/list/an_wld.html.

Поделиться с друзьями: