Чтение онлайн

ЖАНРЫ

Советские дизель-электрические подводные лодки послевоенной постройки
Шрифт:

ПРОЕКТ 641Б «СОМ» TANGO CLASS

ТАКТИКО-ТЕХНИЧЕСКИЕ ДАННЫЕ ПРОЕКТА 641 Б.

«Горьковский комсомолец»,

«Магнитогорский комсомолец» (с 9 июня 1980 г.)

«Комсомолец Таджикистана» (с 26 августа 1980 г.)

+ 15 единиц.

Код НАТО: 18-го класса TANGO.

Водоизмещение: 2750/3546 т.

Размеры: 90,2x9,6x6,9 м.

Силовая установка: 3 дизеля, 6000 л.с.; 3 электродвигателя, 5200 л.с.; 3 винта.

Вооружение: 6-533 мм ТТ (нос), 24 торпеды.

Скорость: 20/16

узлов.

Глубина погружения: 300/240 м.

Экипаж: 78 человек.

Автономность: 80 суток.

Навигационно-акустическое оборудование: навигационный комплекс «Мост»-641Б, ГАК МГК-400 «Рубикон», БИУС «Узел», АСУ «Пирит», АСУ стрельбы «Вольфрам».

Строительство: головная сдана в июле 1973 г. в Горьком (Нижний Новгород) – в Севастополь Б-380. Главный конструктор Ю.Н. Кормилицын.

TANGO class является дальнейшим усовершенствованием проекта 641 FOXTROT.

ГИДРОАКУСТИЧЕСКИЕ КОМПЛЕКСЫ ПЛ В ПРОТИВОЛОДОЧНОЙ БОРЬБЕ

Дизель-электрические лодки первых послевоенных проектов «проложили дорогу» для экипажей современных субмарин, в океанских походах набирая опыт эксплуатации боевой техники, осваивая приемы подледного плавания, изучая гидрологическую и гидрографическую обстановку стратегически важных районов океана, отрабатывая тактику противолодочного поиска и противокорабельной борьбы.

Тактика противолодочной борьбы зачастую сводится к поиску и обнаружению ПЛ противника с помощью гидроакустических средств раньше, чем это сделает противник.

При этом состояние окружающей ПЛ среды приобретает важнейшее значение, особенно такие параметры, как зоны акустической сходимости и положение подлодки относительно «термоклина».

Зоны сходимости представляют собой кольцеобразные районы вокруг подводного корабля. Звук, направляющийся вниз от точки конвергенции, расположенной в зоне сходимости, преломляется в зависимости от давления и температуры воды, двигается вверх и вниз по отношению к поверхности по спирали через нерегулярные интервалы, которые также зависят от состояния окружающей ПЛ среды.

Командир корабля, стараясь не попадать в эти районы – относительно того, где, по его мнению, находится цель, может уклониться от обнаружения. Для этого ему нужно быть в пределах тех районов, где звук распространяется от своего источника просто радиально.

Самый простой способ – занять позицию над слоем температурного скачка (термоклина) или под ним, чтобы он разделял подлодки – тогда звуки, издаваемые его двигателем, будут скорее всего отражаться от слоя и вражеская лодка его не обнаружит.

Температурный скачок – пограничный слой подводного пространства, разделяющий теплые поверхностные воды и более холодные глубокие области.

Дизельные подводные лодки наряду с атомными занимают видное место в агрессивных планах руководства ВМС стран блока НАТО. Согласно данным справочника «Джейн», в середине 1980 года во флотах стран Североатлантического союза насчитывалось 186 дизельных лодок.

Дизельные подводные лодки обладают определенными преимуществами перед атомными, К ним относят, в частности, меньшую шумность, что улучшает условия работы гидроакустических станций (ГАС) при решении задач противолодочной борьбы.

В настоящее время, как сообщает иностранная пресса, наметилась интеграция гидроакустической техники с БИУС и системами управления оружием, происходящая на базе широкого использования ЭВМ. В результате качественно изменились тактические

возможности гидроакустической аппаратуры. Повысилась вероятность обнаружения целей и классификации полученного контакта. Кроме того, стало реальным одновременно следить за несколькими (до шести) целями и быстро выявлять изменения в их маневрировании, автоматически получать информацию и непрерывно выдавать ее во все сопряженные системы и наглядно, в удобном для непосредственного применения виде, отображать на экранах и табло, а при необходимости регистрировать.

Цифровая обработка сигналов позволила системам пассивной локации подводной лодки достаточно точно определять только по шумам цели пеленг и дистанции до нее.

Наконец, интеграция различных систем на базе ЭВМ упростила контроль за работой и обслуживание ГАС и позволила сократить обслуживающий персонал, что имеет немаловажное значение для сравнительно небольших по водоизмещению дизельных подводных лодок.

Основным трактом акустической станции является шумопеленгаторный с дальностью действия несколько десятков километров. В низкочастотном (220 Гц – 7 кГц) диапазоне прием сигналов происходит на конформную (совмещенную с обводами носовой части корпуса) акустическую антенну состоящую из пьезокерамических гидрофонов, а в высокочастотном (8 кГц) – на цилиндрическую антенну с гидрофонами из цирконата свинца, размещенную вблизи киля. Цилиндрическая антенна служит также и для слежения за несколькими (до четырех) целями. Оба канала шумопеленгования дополняют друг друга. Окружающее пространство обозревается путем быстрого последовательного опроса большого числа передающих 360° статически сформированных лепестков характеристики направленности. Обнаруженные шумящие цели пеленгуются с высокой точностью равносигнальным методом.

Активный тракт дал возможность вести круговой обзор при всенаправленном излучении одной посылки или при излучении серии посылок в последовательно меняющиеся направления, а также излучать одиночные посылки в определенном направлении. Принятые эхо-сигналы отображаются на экране индикатора и могут быть записаны для измерения доплеровского сдвига частоты.

Тракт пассивной локации имеет на каждом борту подводной лодки три приемные антенны, установленные заподлицо с корпусом в носовой, средней и кормовой частях. Они принимают шумы цели, которые подвергаются корреляционной обработке, что позволяет с достаточной точностью определить место цели по трем линиям положения. Антенны тракта могут использоваться как дополнительные для тракта шумопеленгования.

Станция обеспечивает направленную и ненаправленную звукоподводную связь.

Тракт обнаружения сигналов гидролокаторов позволяет обнаруживать импульсные сигналы различного происхождения на расстоянии нескольких десятков километров, определять их частоту, длительность и направление на источник сигнала.

В конструкции станции широко использованы интегральные схемы, благодаря этому уменьшены ее габариты и вес, повышена надежность. Данные о целях отображаются на двух экранах, автоматически поступают на автопрокладчик ЭВМ системы управления торпедной стрельбой, где вырабатываются команды для стрельбы.

Разработана и более простая гидроакустическая станция. Она включает тракты шумопеленгования, эхо- пеленгования и пассивной локации. Поиск и обнаружение целей ведется в режиме шумопеленгования с применением кореляционного метода обработки сигнала. После обнаружения цели дистанция до нее измеряется путем излучения направленной одиночной посылки или методом пассивной локации.

В целях повышения эффективности использования средств гидроакустического наблюдения на подводных лодках имеют также приборы для измерения скорости распространения звука в воде и для сигнализации о начале возникновения кавитации гребных винтов, приборы контроля уровня собственных шумов.

Поделиться с друзьями: