Чтение онлайн

ЖАНРЫ

Шрифт:

Физическая гипотеза удовлетворяет условию непротиворечивого представления, если эта гипотеза оказывается совместной с фундаментальными принципами динамики, включающими, например, ньютоновы законы движения и принцип сохранения механической энергии. Новая наука не только должна оправдывать группу физических явлений, которую она описывает, но не должна также противоречить принципам, установленным другими науками6. Слова «consistent representation» («непротиворечивое представление») являются максвелловским переводом выражения, употреблённого в 1845 г. Гауссом в письме к Вильгельму Веберу7. Гаусс писал, что не способен образовать «konsruirbar Vorstellung» того, как распространение электромагнитных возмущений имеет место в конечный период времени8.

Физическая гипотеза удовлетворяет условию независимого доказательства если свойства материальной системы, которую она описывает, можно исследовать независимо от той науки, которую

она имеет назначением объяснить. Заканчивая трактат «Электричество и магнетизм», ссылаясь на более раннюю попытку построить динамическое объяснение электромагнитной науки, Максвелл указывал, что задача динамического объяснения всегда позволяет бесконечное число решений. «Попытка представить работающую модель этого механизма, которую я тогда сделал, должна быть принята не за что большее, чем она на самом деле есть — доказательство того, что можно вообразить механизм, способный осуществить связь, механически эквивалентную действительной связи частей электромагнитного поля. Задача определения механизма, требуемого для того, чтобы осуществить данный вид связи между движениями частей некоторой системы, всегда допускает бесконечное число решений. Из этих решений некоторые могут быть более неуклюжи, или более сложны, чем другие, но все они должны удовлетворять условиям механизма вообще»9. Если нет никаких независимых признаков для того, чтобы выделить одно объяснение среди бесчисленного множества других, то это объяснение в лучшем случае тривиально; оно служит только для того, чтобы доказать возможность динамического объяснения.

Я предполагаю сначала рассмотреть применение динамического объяснения Максвеллом в его исследованиях по электромагнетизму, а затем — роль, которую такая программа играла в его исследованиях кинетической теории газов.

2. В первом из трёх мемуаров по электричеству и магнетизму — «О фарадеевых линиях силы» [13], прочитанном в 1865 г., Максвелл демонстрировал динамическую аналогию между электростатикой и движением жидкости. Он также утверждал, что ближайшей задачей физики является обеспечить динамическое объяснение наук об электричестве и магнетизме. Во втором мемуаре — «О физических линиях силы» [14], опубликованном в 1861 — 1862 гг., Максвелл вывел знаменитые уравнения поля и электромагнитную теорию света и начал проектируемое динамическое объяснение, заключавшееся в том, что он назвал теорией молекулярных вихрей. В этой теории свойств системы вращающихся сферических ячеек, натянутых подобно шарикам вдоль линий магнитной силы, утверждалось, что эти шарики образуют наблюдаемые свойства магнитного действия. Вращение ячеек заставляет их раздвигаться в боковом направлении и сжиматься в продольном направлении, что в свою очередь создаёт натяжение вдоль линий магнитной силы и одинаковое во всех направлениях давление в плоскости, расположенной под прямым углом к линиям силы. Далее, свойства системы маленьких частичек, движущихся между соседними вихрями, когда их угловые скорости различаются, образуют наблюдаемые свойства электрического действия. Теория молекулярных вихрей, к удовлетворению Максвелла, отвечала условию непротиворечивого представления, но не могла удовлетворить условию независимого доказательства. В третьем мемуаре — «Динамическая теория электромагнитного поля» [9], опубликованном в 1864 г. и в «Электричестве и магнетизме», опубликованном в 1863 г., Максвелл утверждал, что физика пока должна удовлетвориться более скромным достижением — тем, что он называл динамической теорией.

Динамическая теория есть динамическое объяснение в менее полной форме. Она ставит задачей спецификацию материальной системы, которая прежде всего не противоречила бы науке, которая должна быть объяснена и должна обладать такой общностью чтобы избегать деталей, требуемых динамическим объяснением. В заметке «О доказательстве уравнений движения системы со связями» Максвелл рассматривает переход от динамического объяснения к динамической теории, пользуясь слегка отличающимися терминами.

«При формулировке динамических теорий физических наук очень часто бывало на практике, что изобреталась какая-нибудь специальная динамическая гипотеза и затем при помощи уравнений движения из неё выводились определённые результаты. Согласие с этими результатами, как предполагалось, давало определённую степень доказательства в пользу этой гипотезы.

Истинный метод физического объяснения состоит в том, чтобы начать с явлений и вывести из них силы путём прямого применения уравнений движения. Трудность при таком подходе заключалась до сих пор в том, что мы наталкиваемся, по крайней мере во время первых стадий исследования, на столь неопределённые результаты, что не имеем достаточно общих членов для выражения их без введения какого-нибудь понятия, не выводимого строго из наших предпосылок.

Поэтому очень желательно, чтобы люди науки изобрели какой-нибудь метод утверждения, благодаря которому представления настолько точные, насколько они могут быть, могли бы быть доведены до ума и в то же время были бы достаточно общими, чтобы можно было избежать введения неоправданных деталей»10.

А в рецензии для «Nature» на книгу «Натуральная философия» лорда Кельвина, тогда ещё В. Томсона, я П. Г. Тэта Максвелл добавил:

«Но когда мы имеем основание считать, что явления, попадающие в сферу нашего наблюдения, образуют только малую часть того, что действительно происходит в системе, вопрос заключается не в том, какие явления будут результатом гипотезы, что система эта есть система определённого специфического вида, но в

том — какова наиболее общая характеристика материальной системы совместной с условием, что движения тех частей системы, которые мы можем наблюдать, суть те же, которые мы на самом деле находим»11.

В электромагнетизме искомая для спецификации материальная система оказалась уравнениями движения, развитыми в 1788 г. Лагранжем в его «Аналитической механике». Законы движения Ньютона и уравнения Лагранжа эквивалентны, но представляют собой разные методы определения движения материальной системы. В заметке об уравнениях движения и в главе по этому вопросу в «Электричестве и магнетизме» Максвелл рассматривает уравнения Лагранжа как с математической, так и с физической точек зрения12. С математической точки зрения исследования Лагранжа сделали возможным сведение законов движения Ньютона, которые необходимо иметь в количестве трёх для каждой частицы материальной системы, к числу, равному числу степеней свободы данной системы. С физической точки зрения исследования Лагранжа позволили перенести описание части механизма из жёсткой системы протяжённых координат в пространстве Декарта к тому, что Максвелл характеризовал как «независимые ведущие колеса13 механизма».

Кельвин и Тэт назвали эти новые координаты, служившие для замены координат Декарта, игнорируемыми координатами; теперь они называются обобщёнными координатами, а изменения их по времени называются обобщёнными скоростями. Для того чтобы применить уравнения Лагранжа к материальной системе, необходимо сначала определить, каковы обобщённые координаты и скорости этой системы, и затем найти, как потенциальная и кинетическая энергии системы зависят от этих величин. Тогда можно определить, удовлетворяет ли система принципу сохранения механической энергии. Этот принцип утверждает, что сумма потенциальной и кинетической энергий материальной системы остаётся постоянной во время движения.

В рецензии на труд Кельвина и Тэта Максвелл объяснил природу динамического объяснения. Объяснил, почему иногда такое объяснение должно быть оставлено, объяснил природу динамической теории и то, как задача динамической теории может быть разрешена применением уравнений Лагранжа. Для иллюстрации Максвелл описал церковный перезвон с определёнными специфическими свойствами.

«В обычном перезвоне каждый колокол имеет один канат, который спускается через отверстие в полу в комнату звонарей. Но представим себе, что каждый канат вместо того, чтобы приводить в действие один колокол, участвует в движении многих частей механизма, и что движение каждого колокола определяется не движением одного только каната, а движением нескольких; далее предположим, что весь этот механизм закрыт и совершенно незнаком людям, стоящим у канатов, которые могут видеть только дыры в потолке над ними»14.

Задача динамического объяснения состоит в том, чтобы выяснить природу механизма в перезвоне на основании наблюдаемых движений канатов. Но так как имеется бесконечное множество решений этой задачи, и так как этот механизм, по определению, недоступен, то такое объяснение тривиально. Оно не может удовлетворить условию независимого доказательства. Задача динамической теории заключается в том, чтобы доказать, не прибегая к недоступному механизму, что наблюдаемое движение канатов совместимо с основными принципами динамики. Решение состоит в определении, применимы ли уравнения Лагранжа к механизму перезвона и остаётся ли сумма потенциальной и кинетической энергий механизма постоянной во время движения. Для того чтобы применить уравнения Лагранжа, прежде всего необходимо установить обобщённые координаты и скорости системы. В задаче о механизме перезвона обобщённые координаты оказываются положениями канатов, а обобщённые скорости — скоростями изменения этих положений. При помощи надлежащей манипуляции с канатами звонари могут определить, как выражаются потенциальная и кинетическая энергии этого механизма в функции обобщённых координат и скоростей15.

История электромагнетизма является в своём роде задачей о перезвоне. Закон Ампера о притяжении и отталкивании между элементами тока и закон Фарадея об электромагнитной индукции соответствуют наблюдаемому движению канатов. Попытка Максвелла дать динамическое объяснение этих законов в его теории молекулярных вихрей соответствует попытке объяснить природу механизма в перезвоне из наблюдаемого движения канатов. Более скромную задачу динамической теории Максвелл описывает в «Электричестве и магнетизме»: «Что я теперь предлагаю сделать — это изучить следствия из допущения, что явление электрического тока — это явление движущейся системы, причём движение передаётся от одной части этой системы к другой силами, природу и законы которых мы даже не пытаемся определить, потому что мы можем исключить эти силы из уравнений движения методом, данным Лагранжем для любой системы со связями»16. Задача применения уравнений Лагранжа к системе электрических цепей упрощается, если она ограничивается цепями, в которых электрическая ёмкость пренебрежимо мала. Для такой системы Максвелл обнаружил, что обобщённые координаты являются совокупностью значений, необходимых для фиксирования положения, формы и размеров каждой цепи; а обобщёнными скоростями являются скорости изменения этих значений вместе с силой тока в каждой цепи; энергия же системы является по форме полностью кинетической17. При помощи такой эмпирической модели Максвелл получил из уравнений Лагранжа законы Ампера и Фарадея в несколько обобщённой форме и доказал, что они совместимы с принципом сохранения механической энергии.

Поделиться с друзьями: