Чтение онлайн

ЖАНРЫ

Структура реальности
Шрифт:

Поскольку в разуме большинства людей сам закон исключенного третьего подкреплен мощной интуицией, его отрицание естественным образом вызывает у неинтуиционистов сомнение в том, так ли уж самоочевидна надежность интуиции интуиционистов. Или, если мы сочтем, что закон исключенного третьего исходит из логической интуиции, он приводит нас к пересмотру вопроса о том, действительно ли математическая интуиция стоит выше логики. И в любом случае, может ли это быть самоочевидным?

Но все это была критика интуиционизма извне. Это не опровержение: интуиционизм невозможно опровергнуть вообще. Если кто-либо настаивает, что непротиворечивость высказывания для него самоочевидна, то доказать его неправоту невозможно так же, как и если бы он настаивал на том, что существует только он один. Однако, как и в случае с солипсизмом в целом, воистину роковая ошибка интуиционизма открывается не тогда, когда на него нападают, а тогда, когда его принимают всерьез в качестве объяснения его собственного, произвольно усеченного мира. Интуиционисты верят в реальность конечного множества натуральных чисел 1, 2, 3… и даже числа 10 949 769 651 859. Но интуитивный аргумент, состоящий в том, что, раз у каждого из этих чисел есть следующее, то, они образуют бесконечную последовательность, для интуиционистов не более чем самообман и потому неубедителен. Но разрывая связь между своей

версией абстрактных «натуральных чисел» и интуитивным представлением, которое эти числа должны были первоначально формализовать, интуиционисты отказывают себе в праве использовать обычную объяснительную структуру, через которую понимаются натуральные числа. Это создает проблему для каждого, кто предпочитает объяснения необъясненным усложнениям. Вместо того чтобы решить эту проблему, предоставив альтернативную или более глубокую объяснительную структуру для натуральных чисел, интуиционизм делает то же самое, что делала Инквизиция и что делали солипсисты: он еще дальше уходит от объяснений. Он вводит дальнейшие необъясненные усложнения (в данном случае – отрицание закона исключенного третьего), единственная цель которых состоит в том, чтобы позволить интуиционистам вести себя так, как если бы объяснения их противников были истинными, но не делая из этого никаких выводов относительно реальности.

Точно так же как солипсизм начинается со стремления упростить пугающе разнообразный и неопределенный мир, но при серьезном к нему отношении оказывается реализмом, дополненным некоторыми ненужными усложнениями, так и интуиционизм в итоге становится одной из самых контринтуитивных доктрин, когда-либо воспринимавшихся всерьез.

Давид Гильберт предложил план гораздо более соответствующий здравому смыслу – хотя, в конечном счете, и обреченный – «раз и навсегда убедиться в надежности математических методов». План Гильберта основывался на идее непротиворечивости. Он надеялся составить однажды и навсегда полный набор современных правил вывода математических доказательств с определенными свойствами. Количество таких правил должно было быть конечным. Они должны были быть применимы непосредственно, так, чтобы определение того, удовлетворяет ли им какое-то предполагаемое доказательство, не вызывало бы споров. Желательно, чтобы эти правила были интуитивно самоочевидными, но это не было первостепенным требованием для прагматичного Гильберта. Он был бы удовлетворен, если бы правила лишь умеренно соответствовали интуиции при условии, что он мог бы быть уверен в их непротиворечивости. То есть, если правила определили данное доказательство как корректное, он хотел быть уверен, что они никогда не определят как корректное любое доказательство с противоположным выводом. Но как он мог в этом убедиться? На этот раз непротиворечивость следовало доказать с помощью метода доказательства, который сам подчинялся тем же правилам вывода. Тем самым Гильберт надеялся восстановить полноту и надежность, присущую аристотелевскому подходу. Он также надеялся, что в соответствии с этими правилами будет в принципе доказуемо любое истинное математическое утверждение и не будет доказуемо никакое ложное утверждение. В 1900 году в ознаменование начала нового века Гильберт опубликовал список проблем, которые, как он надеялся, математики смогут решить в XX веке. Десятая проблема заключалась в нахождении набора правил вывода с вышеуказанными свойствами и доказательстве их непротиворечивости на их же основе.

Гильберту предстояло пережить полное разочарование. Тридцать один год спустя Курт Гёдель произвел революцию в теории доказательств радикальным отрицательным результатом, от которого до сих пор не оправились математический и физический мир: он доказал, что десятая проблема Гильберта не имеет решения. Во-первых, Гёдель доказал, что любой набор правил вывода, пригодный для корректного обоснования даже доказательств обычной арифметики, никогда не позволит обосновать доказательство своей собственной непротиворечивости. А значит, нечего и надеяться найти доказуемо непротиворечивый набор правил, о котором мечтал Гильберт. Во-вторых, Гёдель доказал, что если какой-то набор правил вывода в некоторой (достаточно обширной) области математики является непротиворечивым (неважно, доказуемо это или нет), то в пределах этой области должны существовать корректные методы доказательства, корректность которых нельзя установить, опираясь на данные правила. Это называется теоремой Гёделя о неполноте. Для доказательства своих теорем Гёдель пользовался замечательным расширением «диагонального аргумента» Кантора, о котором я упоминал в главе 6. Он начал с рассмотрения произвольного непротиворечивого набора правил вывода. Затем он показал, как составить утверждение, которое невозможно ни доказать, ни опровергнуть с помощью этих правил. Затем он доказал, что это высказывание является истинным.

Если бы программа Гильберта сработала, это стало бы плохой новостью для той концепции реальности, которую я выдвигаю в этой книге, поскольку устранило бы необходимость понимания при суждении о математических идеях. Кто угодно – или любой неразумный компьютер, – выучив правила вывода, на которые так надеялся Гильберт, смог бы судить о математических утверждениях, как и самый способный математик, не нуждаясь в математическом озарении или понимании и даже не имея самого отдаленного представления о смысле этих утверждений. Стало бы принципиально возможно делать новые математические открытия, не зная математики вообще, а зная только правила Гильберта. Можно было бы просто проверять все возможные строки букв и математических символов в алфавитном порядке, пока одна из них не прошла бы тест на то, является ли она доказательством или опровержением какого-либо знаменитого недоказанного предположения. В принципе, так можно было бы уладить любой спор в математике, даже не понимая его смысла – даже не зная значения символов, не говоря уж о понимании принципа действия доказательства или того, что оно доказывает, или в чем заключается метод доказательства, или почему на него можно положиться.

Может показаться, что достижение единого стандарта доказательств в математике могло бы, по крайней мере, помочь нам во всеобщем стремлении к объединению – то есть к «углублению» нашего знания, о котором я говорил в главе 1. Однако в действительности все наоборот. Подобно предсказательной «теории всего» в физике, правила Гильберта почти ничего не сказали бы нам о структуре реальности. Они реализовали бы в рамках математики заветную мечту редукционистов – предсказывать все (в принципе), но ничего не объяснять. Более того, если бы математика стала редукционистской, то все нежелательные черты, которые, как я показал в главе 1, отсутствуют в структуре человеческого знания, присутствовали бы в математике: математические идеи образовывали бы иерархию, в основе которой лежали бы правила Гильберта. Математические истины, проверка которых, исходя из этих правил, была бы очень сложна, оказались бы объективно менее фундаментальными, чем те, которые можно было бы немедленно проверить с помощью этих правил. Поскольку мог существовать только конечный набор таких фундаментальных истин,

со временем математике пришлось бы заниматься все менее фундаментальными задачами. Математика вполне могла исчерпать себя, будь верна эта зловещая гипотеза. В противном случае она неизбежно распадается на все более загадочные специализации по мере увеличения сложности «эмерджентных» вопросов, которые вынуждены решать математики, и по мере того, как связи между этими вопросами и основаниями предмета становятся все более отдаленными.

Благодаря Гёделю мы знаем, что никогда не будет неизменного метода определения истинности математического утверждения, как не существует и неизменного способа определения истинности научной теории. Не будет никогда и неизменного способа создания нового математического знания. Следовательно, прогресс в математике всегда будет зависеть от творческого подхода. Изобретение новых типов доказательств всегда будет возможным и необходимым делом для математиков. Они будут проверять их с помощью новых аргументов и новых способов объяснения, зависящих от непрерывно растущего понимания используемых при этом абстрактных сущностей. Примером служат теоремы самого Гёделя: чтобы доказать их, ему пришлось изобрести новый метод доказательства. Я сказал, что этот метод был основан на «диагональном аргументе», однако Гёдель по-новому расширил это доказательство. До него так ничего не доказывали; никакие правила вывода, составленные кем-либо, кто никогда не видел метода Гёделя, не обладали бы, вероятно, такой предсказательной силой, чтобы определить его как корректный. Однако его корректность самоочевидна. Откуда исходит эта самоочевидность? Она возникает из понимания Гёделем природы доказательства. Доказательства Гёделя столь же убедительны, как и любые другие математические доказательства, но только для того, кто прежде поймет сопутствующее им объяснение.

Таким образом, и в чистой математике объяснение играет ту же самую первостепенную роль, какую оно играет в естественных науках. Объяснение и понимание мира – физического мира и мира математических абстракций – в обоих случаях является целью изучения. Доказательства и наблюдения – это всего лишь средства проверки наших объяснений.

Роджер Пенроуз извлек из результатов Гёделя еще более глубокий, радикальный и достойный Платона урок. Как и Платона, Пенроуза восхищает способность человеческого разума постигать абстрактные достоверные факты математики. Но в отличие от Платона, Пенроуз не верит в сверхъестественное и принимает как само собой разумеющееся, что мозг – часть естественного мира и имеет доступ только к этому миру. Таким образом, проблема для него встает даже острее, чем для Платона: как может нечеткий и ненадежный мир давать математическую уверенность такой нечеткой и ненадежной части себя, какой является математик? В особенности Пенроуза удивляет, каким образом нам удается почувствовать безошибочность новых корректных форм доказательства, которых, как уверяет Гёдель, бесконечно много.

Пенроуз все еще работает над подробным ответом, но заявляет, что само существование неограниченной математической интуиции такого рода фундаментально несовместимо с существующей структурой физики и, в частности, с принципом Тьюринга. Вкратце его доказательство выглядит примерно так. Если принцип Тьюринга является истинным, то можно рассматривать мозг (как и любой другой объект) в качестве компьютера, выполняющего определенную программу. Взаимодействие мозга с окружающей средой складывается из входных и выходных данных. Теперь рассмотрим математика в процессе решения вопроса о том, обоснован или нет недавно предложенный вид доказательства. Принятие такого решения эквивалентно исполнению в мозге математика компьютерной программы проверки доказательства. Такая программа воплощает некий набор правил вывода Гильберта, который, в соответствии с теоремой Гёделя, вероятно, не может быть законченным. Более того, как я уже сказал, Гёдель предложил способ создания и доказательства истинного утверждения, которое эти правила не способны признать доказанным. Следовательно, математик, разум которого, по сути, является компьютером, применяющим эти правила, также никогда не сможет признать это утверждение доказанным. Затем Пенроуз предлагает показать этому самому математику данное утверждение и метод доказательства его истинности по Гёделю. Математик понимает доказательство. Оно все-таки самоочевидно корректно, поэтому математик, вероятно, сможет увидеть его корректность. Но это бы противоречило теореме Гёделя. Следовательно, где-то в рассуждении должно быть ложное допущение, и Пенроуз считает, что этим ложным допущением является принцип Тьюринга.

Большинство специалистов по информатике несогласны с Пенроузом, что слабое звено в этом рассуждении – это принцип Тьюринга. Они бы сказали, что математик из этого рассуждения на самом деле не сможет признать гёделевское утверждение доказанным. Может показаться странным, почему математик вдруг не сможет понять самоочевидное доказательство. Но взгляните на следующее утверждение:

Дэвид Дойч не может непротиворечиво признать, что данное утверждение является истинным.

Я стараюсь изо всех сил, но не могу непротиворечиво заключить, что оно истинно. Поскольку, если бы я сделал это, я бы пришел к выводу о том, что я не могу составить суждение о его истинности, и вступил бы в противоречие с самим собой. Однако вы ведь видите, что оно истинно, не так ли? Это демонстрирует, по крайней мере, возможность того, что утверждение будет недоступно пониманию для одного человека, но самоочевидно истинным для любого другого.

Так или иначе, Пенроуз надеется на новую фундаментальную теорию физики, которая заменит как квантовую теорию, так и общую теорию относительности. Она давала бы новые проверяемые предсказания, хотя, безусловно, согласовывалась бы и с квантовой теорией, и с теорией относительности во всех существующих наблюдениях. (Для этих двух теорий неизвестно экспериментальных контрпримеров.) Однако мир Пенроуза по своей сути сильно отличается от того, что описывает существующая физика. Фундаментальной структурой реальности в нем является то, что мы называем миром математических абстракций. В этом отношении Пенроуз, реальность которого включает все математические абстракции, но, вероятно, не все абстракции (вроде чести и справедливости), находится где-то между Платоном и Пифагором. То, что мы называем физическим миром, является для него вполне реальным (еще одно отличие от Платона), но каким-то образом это является частью, или эмерджентной формой, самой математики. Более того, в его мире не существует универсальности; в частности, не существует машины, способной воссоздать все возможные мыслительные процессы людей. Однако мир (в особенности, конечно, его математическое основание) все еще остается постижимым. Его постижимость гарантирована не универсальностью вычислений, а явлением, достаточно новым для физики (хотя и не для Платона): математические сущности напрямую взаимодействуют с человеческим мозгом через физические процессы, которые еще предстоит открыть. Таким образом, мозг, по Пенроузу, не занимается математикой, ссылаясь единственно на то, что мы сейчас называем физическим миром. Он имеет прямой доступ к реальности математических форм Платона и там может постигать математические истины (за исключением грубых ошибок) с абсолютной уверенностью.

Поделиться с друзьями: