Чтение онлайн

ЖАНРЫ

Техника и вооружение 2009 03
Шрифт:

Установка складывающихся экранов предусматривалась на лобовой части и бортах корпуса, а также на бортах башни танка. Экраны состояли из двух решетчатых рам, изготавливавшихся из алюминиевого сплава. Такая форма экранов была выбрана вследствие их высокой живучести, однако они могли быть выполнены из сплошных стальных листов, стальных листов с отверстиями, а также из легких сплавов и стеклопластиков. Крепление экранной защиты на броне танков осуществлялось с помощью кронштейнов, рычагов и шарниров с резиновыми втулками. В боевом (развернутом) положении верхние рамы экранов фиксировались с помощью стопоров, но могли свободно откланяться на некоторый угол за счет деформации резиновых втулок. Такое упругое соединение верхних рам с корпусом обеспечивало большую живучесть системы при попадании в них снаряда. Свободное крепление нижней рамы в нижней части корпуса и возможность ее отклонения в обе стороны позволяло танку преодолевать препятствия на поле боя. Конструкции бортовых экранов (по четыре на борт) для среднего (вертикальный борт) и тяжелого (гнутый борт) танков отличались

между собой местами крепления кронштейнов экранов к корпусу машины. Конструкция складывающейся экранной защиты бортов башни была аналогична конструкции защиты бортов тяжелого танка.

Из-за относительной сложности конструкции данная разработка не была рекомендована для серийного производства.

Другим мероприятием по повышению противокумулятивной стойкости отечественных танков, не имевшим недостатков взводных экранов, являлось применение конструктивной брони, возможность использования которой была исследована в ЦНИИ-48 еще в 1946–1947 гг. Было разработано и испытано несколько вариантов такой брони. Один из вариантов конструктивной брони представлял собой стальные стержни («зубья»), приваривавшиеся торцами к основной броне. При попадании снаряда в торец стержня и инициировании кумулятивной струи, последняя гасилась без особых последствий для основной брони. В другом варианте для инициирования кумулятивной струи на определенном расстоянии и ее гашения были использованы стальные уголки. Если кумулятивная струя приходилась на сгиб, то происходило ее частичное рассеивание, а глубина воронки от кумулятивной струи в основной броне уменьшалась наполовину. Предусматривалось использование и комбинированного варианта — сочетание уголков и стержней. Однако до практического использования на первых послевоенных отечественных танках разработанных вариантов конструктивной брони дело не дошло. Применение такого вида конструктивной брони для повышения противокумулятивной стойкости корпусов бронированных машин было целесообразно при наличии больших углов наклона (свыше 75°) верхних броневых листов их носовой части. Впоследствии элементы конструктивной брони были использованы на шведском безбашенном танке Strv-103B (1969 г.) для дополнительной защиты верхнего лобового листа корпуса, а также на отечественных боевых машинах пехоты БМП-1 (1966 г.) и БМП-2 (1980 г.) в виде ребристого листа над трансмиссионным отделением и отделением управления. Примером использования принципа «встроенной» конструктивной брони может служить и ступенчатая криволинейная форма носовой части корпуса и башни в проекте танка «Объект 757» (1958 г.) с управляемым ракетным оружием, разработанного в конструкторском бюро ЧКЗ. Следующий проект танка «Объект 772» с управляемым ракетным оружием, выполненный в 1962 г., имел литой броневой корпус, у которого, помимо лобовой части, и борта были выполнены по типу «встроенной» конструктивной брони.

К одному из вариантов конструктивной брони можно отнести противоснарядные решетчатые экраны, которые были разработаны в ЛФТИ в 1948 г. в результате дальнейших исследований по совершенствованию конструкции взводных противокумулятивных решетчатых экранов.

Эти исследования показали, что, применив двухрядную решетку с шахматным расположением и увеличенным до 73–93 мм диаметром прутков, можно наряду с противокумулятивной стойкостью повысить и противоснарядную стойкость всей броневой конструкции. При использовании такой конструктивной брони в зависимости от ее параметров (расстояния между прутками и их диаметра) наблюдалось либо изменение угла встречи снаряда с броней, либо его дробление, либо и то, и другое. Однако в этом случае также требовалась «оптимизация» параметров защиты под конкретные типы снарядов. Масса таких элементов конструктивной брони была значительно больше массы противокумулятивных решетчатых экранов. Дальнейшего развития этот вид конструктивной брони не получил.

Схема установки складных решетчатых экранов на башне танка.

Вид конструктивной брони после подрыва кумулятивного заряда на стержне (стержень в центре).

Справа: схема подрыва кумулятивного заряда на стержне.

Справа: схема подрыва кумулятивного заряда на стержне со смещением.

Внизу: вид конструктивной брони после подрыва кумулятивного заряда (стержень смещен).

Схема подрыва кумулятивного заряда на металлическом уголке.

Разработка и изготовление монолитных стальных броневых конструкций корпусов и башен первых послевоенных отечественных танков с использованием новых марок

броневых сталей велись с учетом опыта их массового производства в годы Великой Отечественной войны. Так, для броневой защиты танка Т-34, рассчитанной на стойкость от воздействия снарядов калибра до 76 мм включительно, применялась сталь 8С высокой твердости. Эта броневая сталь не давала хрупких поражений при попадании снарядов, а необходимая вязкость брони обеспечивалась рационально подобранным химическим составом стали и соответствующей технологией изготовления.

На послевоенных средних и тяжелых танках для изготовления корпусов и башен использовалась высоколегированная броневая сталь средней твердости. Так, например, носовая часть и борта броневого корпуса средних танков Т-54 и Т-55 изготавливались из катаной брони — сталей 52С и 42СМ (М — модифицированная), корма и крыша — из стали 49С, днище — из стали 43ПСМ. Корпуса башен танков отливались из стали 74Л, вварные донный лист и крыша башни — из катаной брони 43ПСМ. Советские броневые стали 43ПСМ (хромомолибденовая), а также 52С и 74Л (хромоникельмолибденовые) являлись одними из лучших в мире. Для соединения броневых листов применялись способы сварки с обработкой кромок «в четверть», «встык» и «в шип».

В 1948–1949 гг. в ЦБЛ-1 были разработан и внедрен на бронекорпусных заводах высокопроизводительный процесс сварки электродами больших диаметров, а в 1951–1956 гг. — процесс автоматической сварки корпусов и башен танков Т-54 и Т-10 аустенитной электродной проволокой (марок ЭИ-464, ЭИ-483, ЭИ-478 и ЭИ-613) под керамическим флюсом АН-14. Большой вклад в разработку технологии автоматической и полуавтоматической сварки броневых деталей корпусов и башен танков в 1951–1954 гг. внес Институт электросварки им. Е.О. Патона АН УССР.

Схема броневой защиты танка «Объект 757» (проект). Литая лобовая часть корпуса и башни выполнены в виде конструктивной брони.

Схема корпуса танка «Объект 772» с конструктивной броней.

Один из вариантов решетчатой конструктивной брони.

Схема макета корпуса со сварным бортом переменной толщины.

В 1953–1956 гг. на заводах № 75, № 200 (ныне Челябинский станкостроительный завод) и № 183 внедрили автоматическую сварку бронекорпусов регулируемой трехфазной дугой, что позволило повысить производительность сварки в 2,5–3 раза при экономии электроэнергии в 1,5 раза. В середине 1950-х гг. в ЦБЛ-1 для усиления броневой защиты вновь разрабатываемых средних танков были проведены работы по исследованию вопроса изготовления бортов корпуса танка с профилем переменного сечения путем электрошлаковой сварки. Использование бортов переменного сечения позволяло повысить противоснарядную стойкость брони с одновременным уменьшением ее массы. Конструкция такого борта состояла из двух броневых листов различной толщины, сваренных между собой под определенным (заданным) углом наклона. В процессе работы в ЦБЛ-1 была разработана технология сварки бортов, которая обеспечивала сохранение требуемой геометрии борта, исключала деформацию листов при сварке, смещение кромок или чрезмерное увеличение зазора, обуславливавших прекращение процесса электрошлаковой сварки (длина шва составляла 5,5 м). Изготовленный из двух частей борта макет прошел испытания обстрелом 100-мм тупоголовыми бронебойными снарядами. Испытания показали, что противоснарядная стойкость сварного соединения составляла 80 % от противоснарядной стойкости толстого листа борта, а сварное соединение и борт в целом обладал высокой конструктивной прочностью (живучестью). Технологию электрошлаковой сварки борта переменного сечения, разработанную оснастку и оборудование предполагалось использовать при изготовлении корпусов (по второму варианту со сварным бортом) опытного танка «Объект 430» завода № 75.

В 1952 г. на заводах № 174 и № 200 была произведена отливка башен танков Т-54 в кокиль с целью внедрения этого способа в серийное производство. Этот способ разработали в ЦБЛ-1 совместно со специалистами завода № 200 и в конце 1955 г. внедрили в серийное производство. В отличие от кокилей, изготавливавшихся из чугуна, для башен танка Т-34 в годы войны в качестве материала кокиля была использована малоуглеродистая сталь. Использование стали позволяло производить ремонт кокиля при появлении в нем трещин, тем самым обеспечивая возможность отливки более сотни башен.

Разработанный и внедренный в производство новый технологический процесс отливки башен в кокили по сравнению с литьем в песчаные формы обеспечивал:

— увеличение съема литья с квадратного метра формовочной площади с 6,4 до 14–15 т, то есть в 2–2,5 раза;

— снижение на 2 т расхода расплавленной стали при изготовлении одной башни танка;

— снижение стоимости изготовления башни на 3500 руб.;

— отсутствие пригара на наружной поверхности башен (трещины, засоры на них встречались обычно в незначительном количестве);

Поделиться с друзьями: