Техника и вооружение 2012 08

Шрифт:
ТЕХНИКА И ВООРУЖЕНИЕ вчера, сегодня, завтра
Научно-популярный журнал
Август 2012 г.
На 1 стр. обложки фото Д. Пичугина.
Проблемы и тенденции создания шлемов с высоким уровнем защиты
Э.Н. Петрова, С.Ю. Чусов, А. В. Щербаков, В. П. Яньков, А. И. Егоров, ОАО «НИИ Стали»
Анализ тенденций развития средств индивидуальной бронезащиты показывает, что наиболее сложным в техническом отношении элементом экипировки является броне шлем (БШ). Требования к нему включают жесткие ограничения по массе, ряду медико-биологических аспектов, связанных с проблемой амортизации ударной нагрузки при защите головы человека, а также необходимостью оснащения
В настоящее время в основном используются полимерные шлемы, обеспечивающие защиту от пистолетных пуль на уровне 1 -го класса по ГОСТ Р 50744-95 или II класса по стандарту США NIJ Std-0106.01, а также от поражения осколками артиллерийских снарядов, мин, гранат и т. п.
Полимерные шлемы, изготовленные с применением арамидных тканей или материалов из сверхвысокомолекулярного полиэтилена (СВМПЭ), обладают существенным преимуществом по сравнению с ранее производимыми шлемами из металлических материалов или стеклопластика. Так, при одинаковой массе в 1,5 кг полимерные шлемы обеспечивают противоосколочную стойкость, определяемую баллистическим пределом V50 1* – скоростью 50% непробития, равную 600-680 м/с, в то время как для стальных шлемов этот показатель составляет всего 250 м/с.
Однако такие шлемы имеют и ряд недостатков. Во-первых, это низкая стойкость к пробитию высокоскоростными стреловидными поражающими элементами (СПЭ) – одним из важных факторов поражающего воздействия современных артиллерийских боеприпасов. Во-вторых, высока вероятность значительного запреградного воздействия на голову из-за расслоения тканевых слоев при поражении и образования тыльной выпучины на корпусе шлема. Нужно учитывать и влияние климатических факторов (перепады температур, атмосферные осадки, солнечная радиация и т.п.) на сохранение защитных и эксплуатационных свойств полимерных шлемов.
Бронешлемы для спецподразделений силовых структур должны обеспечивать защиту и от более мощных боеприпасов, чем указанные выше. Осуществить это довольно сложно. Повышение требований к бронешлемам даже до обеспечения уровня защиты 2-го класса по ГОСТ Р 50744-95 увеличивает ожидаемую интенсивность динамического воздействия на шлем почти в 2 раза по сравнению с уровнем 1 -го класса защиты, что можно увидеть из табл.1.
1* Скорость 50% непробития Vx – скорость стандартного осколка (имитатора в еще стального шарика диаметром 6,35мм и массой 103 г) в момент соударения, при которой в 50% случаях происходит пробитие шлема, а в 50% – непробитие его.
Попытки создания тканевополимерного шлема 2-го класса защиты предпринимаются давно, поскольку полимерные композиции дают надежду на получение конечного изделия (БШ) с минимально возможной массой. В ОАО «НИИ Стали» ведутся работы в этом направлении с использованием новыхарамидных тканей с улучшенными свойствами и применением термопластичных пленочных связующих по традиционной для института технологии горячего прессования. В опытных экземплярах институту удалось получить шлем требуемого уровня защиты массой 1,9 кг.
ЗАО ЦВМ «Армоком» по специальной технологии уже производит тканево-полимерный бронешлем 2-го класса защиты ЛШЗ-2ДТ (СКАТ-2ДТ) массой 2,0 кг (без забрала) с площадью защиты 15 дм^2 . Его корпус состоит из двух жестких конструктивных слоев (внешнего и внутреннего) и расположенного между ними бронезащитного дискретно-тканевого пакета, состоящего из специально раскроенных и практически не скрепленных между собою кусков арамидной ткани. Давно замечено, что баллистическая ткань лучше работает, когда отдельные нити в ней имеют определенную подвижность. Поэтому защитные характеристики ткани сильно зависят от вида плетения, размеров куска ткани, скорости нагружения. Если ткань пропитать связующим, которое после полимеризации твердеет (что и делают большинство зарубежных и отечественных производителей), то подвижность отдельных нитей значительно уменьшится, следовательно, уменьшится и стойкость композита в целом.
Специалисты «Армокома» при разработке своей технологии постарались максимально учесть этот факт.
Правда, «дискретно-тканевая» технология также не идеальна для решения поставленной задачи. Пока не нашел четкого ответа ряд существенных вопросов: как обеспечить герметичность внутреннего пакета, как снизить значительно большее, чем в альтернативных технологиях, запреградное воздействие, как обеспечить необходимую жесткость шлема. Кроме того, эти шлемы (как, впрочем, и шлемы,
полученные по другим технологиям) имеют достаточно большую толщину защитной композиции, что в итоге приводит к большим внешним габаритам изделия. В боевых условиях это отражается на эргономических характеристиках и шлема, и комплекта экипировки в целом.Класс защиты по ГОСТ Р50744-95 | Средство поражения | Калибр, мм | Масса пули, г | Тип сердечника | Скорость, м/с | Кинетическая энергия, Дж | Удельная кинетическая энергия, Дж/мм^2 |
1 | Пуля Пет патрона 57-Н-181С (пистолет ПМ) | 9,0 | 5,9 | Стальной | 315 | 300 | 4,7 |
2 | Пуля патрона 7Н7 (пистолет ПСМ) | 5,45 | 2,5 | Стальной | 325 | 130 | 35 |
2 | Пуля патрона 57-Н-134С (пистолет ТТ) | 7,62 | 5,5 | Стальной | 445 | 540 | 34 |
3 | Пуля патрона 7Н6 (автомат АК74) | 5,45 | 3,4 | Стальной нетермоупрочненный | 890 | 1350 | 140 |
3 | Пуля ПС-43 патрона 57-Н-231 (автомат АКМ) | 7,62 | 7,9 | Стальной нетермоупрочненный | 745 | 2080 | 165 |
5 | Пуля ЛПС патрона 57-Н-323С (винтовка СВД) | 7,62 | 9,6 | Стальной нетермоупрочненный | 835 | 3270 | 205 |
Бронепанели из сверхвысокомолеклярного полиэтилена (СВМПЭ-UD) сегодня успешно применяются в бронежилетах 2-го класса защиты по ГОСТ Р 50744-95. В отличие от композитов, полученных из арамидных тканей, полиэтиленовые защитные структуры относятся к так называемым «однонаправленным структурам», в которых элементарные нити в одном слое укладываются в одном направлении, а в другом слое – в направлении, перпендикулярном относительно предыдущего слоя. Нити в каждом слое и слои склеиваются между собой при нагревании композиции до определенной температуры. Отсутствие переплетений нитей и относительно непрочное соединение нитей между собой приводит к тому, что при высокоскоростном нагружении нити максимально реализуют свои прочностные характеристики, поглощая энергию пули.
Предпринимались попытки изготовления из этого материала и шлемов с уровнем защиты по 2-му классу ГОСТ. Однако отсутствие в России соответствующего оборудования и исходного сырья не позволили решить эту проблему. Между тем шлемы из этого материала (правда, с уровнем защиты, соответствующим 1 -го классу ГОСТ) в настоящее время серийно производятся в США, Германии, Израиле, и их разработчики не видят проблем в создании шлемов под требования российского стандарта, в том числе и по 2-му классу по ГОСТ Р 50744-95. При этом масса такого шлема ожидается в пределах 1,5-1,7 кг, т.е. полиэтилен позволяет обеспечить значительное снижение массы изделия.
Для организации производства таких шлемов в России требуется создать многое: организовать производство волокна, наладить выпуск так называемого «флата» – нетканого листового материала из полиэтиленового волокна и, наконец, создать или приобрести за рубежом соответствующее прессовое оборудование, обеспечивающее точность термостатирования на уровне 0,5'С. Ясно, что без государственного финансирования, используя только частный капитал, организовать такое производство вряд ли удастся.
Недостатки полиэтиленовых шлемов по сравнению со стальными точно такие же, как и тканевополимерных-большой габарит и высокий уровень запреградной травмы.