ТСЖ. Организация и эффективное управление
Шрифт:
При рассмотрении вопроса экономии тепла отмечалось, что в силу объективных и субъективных причин из теплосети может подаваться теплоноситель с повышенными параметрами по отношению к расчетным, что приводит к поступлению в систему отопления дома излишнего количества тепла.
Но часто бывает и противоположная ситуация, когда в дом поступает недостаточное количество тепла. К сожалению, это чаще всего происходит при низкой температуре наружного воздуха. Причин может быть несколько: и недостаточная подача топлива, и технические проблемы в самой ТЭЦ или котельной, и другие факторы.
Главная причина, по нашему мнению, заключается в значительном износе тепловых сетей, которые не в состоянии выдерживать давление, необходимое для транспортировки теплоносителя с температурой до 150 ° С. Такая ситуация обычно складывается при низких температурах наружного воздуха, приближающихся
Исправить положение может только автоматизированный отбор тепла в строго необходимом объеме и направление его в систему отопления жилого дома. Эту задачу выполняет автоматизированный узел управления подачей тепла, устанавливаемый в ИТП дома. Рассматривая этот узел как некую управляющую систему, а отклонения параметров входящего теплоносителя от заданных как воздействие возмущающих факторов внешней среды, следует предусмотреть в системе установку необходимых регуляторов с прямой и обратной связью, обеспечивающих локализацию этих факторов и получение на выходе требуемых параметров теплоносителя. Именно по такому принципу работает автоматизированный узел управления. Имеющийся в нем датчик температуры наружного воздуха передает соответствующий сигнал на регулятор параметров выходящего из узла управления теплоносителя. Этот регулятор пропускает в систему отопления такое количество теплоносителя с заданной температурой, которое обеспечит поступление в систему отопления расчетного количества тепла при определенной датчиком температуре наружного воздуха. Достигается это подачей соответствующих команд регулирующим устройством, установленным на подающем и обратном трубопроводах при вводе в ИТП.
Автоматизированный узел управления устанавливается в ИТП и подключается к тепловым сетям как по независимой, так и по зависимой схеме.
При независимой схеме устанавливаются теплообменники (как правило, малогабаритные, пластинчатые), циркуляционные насосы, фильтры, арматура (запорная и регулирующая), приборы автоматического регулирования, КИП, датчики и другое оборудование, предусмотренное проектом. Наружный контур теплообменников подключается к тепловой сети, а внутренний через циркуляционные насосы соединяется с системой отопления дома. Автоматика обеспечивает поступление в эту систему расчетного количества тепла, необходимого для восполнения теплопотерь здания при фактической температуре наружного воздуха.
Зависимая схема предполагает установку камеры смешения, насоса и необходимой арматуры, КИП и автоматики. В камеру подается теплоноситель из подающего трубопровода тепловой сети и насосом – из обратного трубопровода системы отопления. Регулирующее устройство обеспечивает по приведенной выше схеме пропуск в систему отопления необходимого количества тепла для компенсации теплопотерь здания.
Выбор той или иной схемы обосновывается с учетом конкретных условий и особенностей каждой из них. Так, независимая схема обеспечивает циркуляцию в системе отопления постоянной массы теплоносителя, она не зависит от располагаемого давления на вводе в ИТП, она может быть рассчитана на любую величину сопротивления системы отопления, не зависит от этажности дома. В то же время эта система требует больше первоначальных и эксплуатационных затрат (чистка теплообменников, подпитка системы и т. п.).
Зависимая схема более проста, требует меньших первоначальных и эксплуатационных затрат, но не обладает достоинствами закрытой схемы, перечисленными выше.
Каждая из указанных схем, обеспечивая поступление в многоквартирный дом необходимого количества тепла, способствует постоянному сохранению комфортных условий в квартирах без каких-либо перепадов температур.
Именно в этом и заключается предназначение автоматизации управления подачей теплоносителя в систему отопления многоквартирного дома. Однако во многих случаях для обоснования целесообразности замены элеваторных узлов на автоматизированные опираются на расчет экономической эффективности от такой замены, используя показания приборов учета тепла и сравнения их с расчетными. При этом не совсем корректно делаются обобщения и выводы. В качестве типичного примера такого подхода можно сослаться на упомянутые ранее результаты, полученные по 200-квартирному дому в Санкт-Петербурге, где в одном из месяцев наблюдался перерасход фактически потребленного тепла над расчетным в 25 %, что составило 98
Гкал стоимостью 84 тыс. руб. (по 854 руб. за одну гигакалорию). Принимая эту цифру за основу как среднюю величину месячного перерасхода тепла, можно считать, что за 9 месяцев отопительного сезона за счет исключения теплопотерь можно получить экономию в 756 тыс. руб. Это на целый дом с двумя элеваторными узлами, замена которых на автоматизированные будет, по самым скромным оценкам, приведенным ООО «Данфосс», составлять 2,5 млн руб. С учетом эксплуатационных затрат и затрат на установку и эксплуатацию приборов учета тепла срок окупаемости установки узлов автоматизации и учета составит порядка четырех лет. При использовании в этом примере проектных расходов тепла (845 Гкал в месяц) при расчетной температуре наружного воздуха и распространяя на них те же 25 % возможного перерасхода в каждом месяце, можно считать, что годовая экономия за счет исключения этого перерасхода составит:845 х 0,25 х 854 х 9 = 1624 тыс. руб.
Полученный в этом случае результат означает значительно больший, чем в предыдущем случае, экономический эффект и меньший в два раза срок окупаемости.
Однако ни тот ни другой расчет НЕЛЬЗЯ ПРИЗНАТЬ КОРРЕКТНЫМ.
В первом случае полученный в результате мониторинга максимальный процент перерасхода тепла в одном из месяцев неправомерно распространяется как средний на весь отопительный период, а во втором этот процент, помимо всего, относится к расчетному расходу тепла при самой низкой расчетной температуре наружного воздуха. Кроме того, в обоих случаях принята одинаковая величина расчетных теплопотерь в каждом месяце, а она существенно отличается по месяцам. Мониторинг наглядно показал, что наряду со значительным (до 25 %) превышением фактически потребленного тепла над расчетным во многих месяцах наблюдается достаточно существенное недополучение (до 15 %) тепла. Такой разброс также предопределяет некорректность в данном случае использования для обобщения максимальных величин в качестве среднестатистических.
В данном примере средняя величина перерасхода и недополучения тепла примерно равны и составляют порядка 5–8 % от расчетной. Сравнение этих величин с принятыми в предыдущих расчетах максимальными величинами, даже без учета упомянутых поправок, предопределяет получение в рассматриваемом примере существенно меньшего экономического эффекта, совершенно несопоставимого со стоимостью установки автоматизированных узлов управления.
С большей долей вероятности можно предположить, что подобные результаты могут быть ожидаемы в большинстве домов, что практически исключает получение положительного результата при расчете экономической эффективности от замены элеваторных узлов автоматизированными.
Однако в отдельных случаях нельзя игнорировать возможность достижения нормативных значений экономической эффективности. Такие случаи только подтверждают общее правило. Это может быть при постоянном и существенном перерасходе тепла в отдельных домах, отмеченном приборами учета или на основании показаний термометров. Если перерасход происходит равномерно по часам и дням, то скорее всего следует рассчитать и заменить сопло элеватора. В случае, когда перерасход происходит неравномерно, например, только в вечерние или ночные часы, вряд ли можно обойтись без установки автоматизированного узла управления, который кроме равномерного, в необходимом количестве, пропуска тепла может обеспечить значительную его экономию.
При всем сказанном нельзя забывать об основном предназначении автоматизированного узла управления – обеспечении поступления в систему отопления дома расчетного количества тепла, что диктуется требованиями современных технических и санитарных норм.
Обобщая изложенный материал, можно сделать следующие выводы, которые могут рассматриваться как практические рекомендации работникам жилищно-коммунальной сферы при оценке и принятии технических решений по оптимизации использования тепловой энергии, поступающей через элеваторные узлы в систему отопления многоквартирных домов.
1. Установка в элеваторных узлах приборов учета тепла без их модернизации или одновременного монтажа автоматизированного узла управления не может быть признана целесообразной для жильцов многоквартирного дома.
2. Автоматизированные узлы управления отпуском тепла должны устанавливаться вместо элеваторных узлов в каждом многоквартирном доме и рассматриваться не только как средство для экономии тепловой энергии, но, главным образом, как необходимый современный инструмент по обеспечению в любое время при любой температуре наружного воздуха подачи необходимого количества тепла в систему отопления дома для поддержания в нем комфортных условий проживания, соответствующих по температуре требованиям современных санитарных норм.