Чтение онлайн

ЖАНРЫ

Творчество в математике. По каким правилам ведутся игры разума
Шрифт:

Я задумался над тем, как можно помочь мастерам в решении этой задачи. Было очевидно, что она заключалась в построении пяти равноудаленных точек на окружности, которые затем соединялись попарно, образуя пентаграмму. Следовательно, задача сводилась к построению правильного пятиугольника. Решение, предложенное Евклидом, не подходило по двум причинам. Во-первых, мне казалось бессмысленным чертить пятиугольник на стене дома тораджи с помощью громоздкого метода Евклида, который я и сам не помнил во всех подробностях. Во-вторых, не совсем этично привносить подобный метод в другую культуру. И тут… Эврика! Почему бы не попытаться решить задачу с помощью методов, свойственных культуре, в которой возникла эта задача? Иными словами, можно ли применить метод «кира-кира» для построения правильных многоугольников? Ответ на этот вопрос оказался утвердительным, хотя и не совсем таким, как предположил бы европейский математик.

Нам

дана окружность, в которую мы хотим вписать правильный пятиугольник.

Применим метод «кира-кира», отложив на бамбуковой рейке пятую часть длины окружности. Затем отложим на окружности полученной меркой пять отрезков: P0P1, Р1Р2…., P4P5. Если конец последнего отрезка совпадает с точкой P0, то есть первая и последняя точки совпадают, замыкая цикл, то отмеченные нами пять точек являются вершинами правильного пятиугольника. Хорды, стягивающие пять дуг окружности, соответствующих этим пяти точкам, являются сторонами искомого пятиугольника. Чтобы построить пентаграмму, достаточно соединить точки нужным образом.

Если цикл не замыкается, то есть если Р5 не совпадает с P0, это означает, что мы допустили ошибку. Сначала я считал, что эту ошибку следует исправить, найдя ее треть с помощью бамбуковой рейки, а затем прибавить ее к исходной длине отрезка (или вычесть из нее). Но это не помогло улучшить результат. Как же решить задачу? Эврика! Я работал с точками на окружности, но по-прежнему использовал отрезки, в то время как мне нужно было исправить ошибку, допущенную при откладывании дуги. Мне нужно было обратить внимание не на рейку, которой я откладывал хорды, а на дугу окружности, соответствующую величине допущенной ошибки.

Спрямленная окружность

Все ясно: требуется рассмотреть окружность как отрезок. Закрепив один конец рейки во второй точке, отмеченной на окружности, я переместил другой конец рейки туда, где, по моему мнению, должен был находиться конец третьей части дуги, соответствующей допущенной ошибке. В результате я получал новую длину хорды.

Ключ к решению заключался в том, что все отметки на бамбуковой рейке соответствовали хордам дуг окружности и… эврика! Результирующая дуга должна представлять собой сумму дуг. Если складывать хорды подобно отрезкам, это условие не выполняется — результирующая дуга не будет равна сумме двух других. Иными словами, сумма хорд будет равна результирующей хорде, только если мы определим сумму хорд как хорду, равную стороне треугольника, построенного на двух исходных хордах:

Мы определили рекурсивный неевклидов алгоритм построения правильных многоугольников, так как описанный нами способ применим при делении окружности на n частей. Кроме того, мы определили новую аддитивную группу, которую назовем «группой хорд окружности». Сумма двух хорд имеет смысл, если определить ее как сторону треугольника, построенного на исходных хордах, — в этом случае результирующая дуга будет равна сумме двух исходных дуг. Метод «кира-кира» оказался достаточно гибким, чтобы его можно было использовать при решении тех задач, для которых он не предназначался.

* * *

ПОСТРОЕНИЕ ПРАВИЛЬНЫХ ДЕВЯТИУГОЛЬНИКОВ В УЗОРАХ АЛЬГАМБРЫ

Метод «кира-кира» позволяет объяснить трюк, о котором упоминают авторы, описывающие построение правильных девятиугольников, встречающихся в узорах Альгамбры в испанском городе Гранада. Я называю этот метод построения трюком потому, что, как известно благодаря трудам Гаусса, правильный девятиугольник нельзя построить с помощью циркуля и линейки.

Нам доподлинно неизвестно, каким именно методом руководствовались арабские мастера, однако вполне возможно, что он был схож с методом «кира-кира». При использовании этого метода окружность сначала делится на три равные дуги, затем

одна из них делится на три части, при этом всякий раз применяется тот же метод, что использовали мастера тораджи. Таким образом мы делим окружность на девять равных дуг, при этом стягивающие их хорды будут сторонами правильного девятиугольника, вписанного в исходную окружность.

* * *

Общение с мастерами тораджи

Я сомневался, стоит ли рассказать мастерам тораджи о том, что метод «кира-кира» можно применить на окружности. До того как встала задача о построении пятиконечной звезды, мастера использовали свой метод для решения любых других задач, но здесь он оказался бессилен. Я боялся, что если расскажу, как можно расширить используемый метод, то тем самым укажу мастерам на то, что их искусство недостаточно высоко. И все же я решил, что после моих объяснений они поймут, что сами сформулировали новую задачу, неподвластную их методу.

* * *

ИСПОЛЬЗОВАНИЕ НЕОБЫЧНОЙ ТРИГОНОМЕТРИЧЕСКОЙ ФУНКЦИИ

Какую ошибку мы совершаем, когда используем хорду окружности в качестве приближенного значения длины ее дуги? Пусть а и с — длина дуги окружности и стягивающей ее хорды соответственно, r — радиус исходной окружности,  — центральный угол, определяющий дугу.

< image l:href="#"/>

Следовательно, функция f(x) = sin (х)/х описывает соотношение хорды и стягиваемой ею дуги окружности. Таким образом, мы показали, как можно по-новому использовать эту необычную тригонометрическую функцию, ранее представлявшую интерес главным образом как пример нестандартного вычисления предела. Несмотря на то что при х = 0 эта функция имеет разрыв, предел функции в этой точке существует и равен 1. Существование этого предела доказывается именно путем сравнения дуг и хорд окружности.

* * *

Когда спустя полтора года я вернулся в эту деревню, мастера по-прежнему чертили пятиконечные звезды на глаз. Когда я рассказал им о том, как можно изменить их метод и использовать его для деления окружности на части, они поняли, что я имел в виду, уже по ходу объяснений, и верно предугадали результат. Они приняли предложенный мною метод и стали применять его.

Хроника математических переживаний

Оригинальное название книги Дэвиса и Херша «Математический опыт» на английском языке звучит как The Mathematical Experience. Английское слово experience имеет более широкое значение, чем слово «опыт» в русском языке. Experience — это одновременно жизненный опыт и переживание, которое вносит вклад в формирование личности. При этом переживание — это психологический, личностный процесс. Таким образом, название книги Дэвиса и Херша можно было бы перевести как «Математическое переживание» — процесс, который, с одной стороны, является личным, с другой — выходит за рамки отдельной среды и культуры. Он не ограничивается исключительно научным миром или, напротив, только повседневной жизнью, может относиться как к теории, так и к практике, к западной культуре и любой другой. Переживания, изложенные в этой главе, отражают математический опыт. Описанные ситуации выходят за рамки отдельной культуры, в них сочетаются наука и повседневная жизнь, психологическое и личное, поэтому их по праву можно назвать математическими переживаниями.

Глава 5

Математика в творчестве

Пока что мы говорили о математическом творчестве. Но давайте посмотрим, как математика используется в областях, которые сегодня являются синонимом творчества вне рамок мира искусства, а именно в дизайне и рекламе.

Нет никаких сомнений относительно того, какую роль играла и продолжает играть геометрия в дизайне. Она неизбежно применяется при создании чего-то материального и осязаемого. С начала XX века чисто геометрические фигуры используются в дизайне самых разных товаров, особенно в дизайне мебели и упаковки. Дизайнеры, обладающие эстетическим вкусом, стремящиеся к абстракции и экономии форм, с помощью геометрических фигур делают свои работы более элегантными.

Поделиться с друзьями: