UNIX: разработка сетевых приложений
Шрифт:
Рис. 6.1. Модель блокируемого ввода-вывода
В этом примере вместо TCP мы используем UDP, поскольку в случае UDP признак готовности данных очень прост: получена вся дейтаграмма или нет. В случае TCP он становится сложнее, поскольку приходится учитывать дополнительные переменные, например минимальный объем данных в сокете (low water-mark).
В примерах этого раздела мы говорим о функции
На рис. 6.1 процесс вызывает функцию
Модель неблокируемого ввода-вывода
Когда мы определяем сокет как неблокируемый, мы тем самым сообщаем ядру следующее: «когда запрашиваемая нами операция ввода-вывода не может быть завершена без перевода процесса в состояние ожидания, следует не переводить процесс в состояние ожидания, а возвратить ошибку». Неблокируемый ввод-вывод мы описываем подробно в главе 16, а на рис. 6.2 лишь демонстрируем его свойства.
Рис. 6.2. Модель неблокируемого ввода-вывода
В первых трех случаях вызова функции
Такой процесс, когда приложение находится в цикле и вызывает функцию
Модель мультиплексирования ввода-вывода
В случае мультиплексирования ввода-выводамы вызываем функцию
Рис. 6.3. Модель мультиплексирования ввода-вывода
Процесс блокируется в вызове функции
Сравнивая рис. 6.3 и 6.1, мы не найдем в модели мультиплексирования ввода- вывода каких-либо преимуществ, более того, она даже обладает незначительным недостатком, поскольку использование функции
Разновидностью данного способа мультиплексирования является многопоточное программирование с блокируемым вводом-выводом. Отличие состоит в том, что вместо вызова select с блокированием программа использует несколько потоков (по одному на каждый дескриптор), которые могут блокироваться в вызовах типа recvfrom.
Модель ввода-вывода, управляемого сигналом
Мы можем сообщить ядру, что необходимо уведомить процесс о готовности дескриптора с помощью сигнала
Рис. 6.4. Модель управляемого сигналом ввода-вывода
Сначала мы включаем на сокете управляемый сигналом ввод-вывод (об этом рассказывается в разделе 22.2) и устанавливаем обработчик сигнала при помощи системного вызова
Независимо от способа обработки сигнала эта модель имеет то преимущество, что во время ожидания дейтаграммы не происходит блокирования. Основной цикл может продолжать выполнение, ожидая уведомления от обработчика сигнала о том, что данные готовы для обработки либо дейтаграмма готова для чтения.
Модель асинхронного ввода-вывода
Асинхронный ввод-выводбыл введен в редакции стандарта POSIX.1g 1993 г. (расширения реального времени). Мы сообщаем ядру, что нужно начать операцию и уведомить нас о том, когда вся операция (включая копирование данных из ядра в наш буфер) завершится. Мы не обсуждаем эту модель в этой книге, поскольку она еще не получила достаточного распространения. Ее основное отличие от модели ввода-вывода, управляемого сигналом, заключается в том, что при использовании сигналов ядро сообщает нам, когда операция ввода-вывода может быть инициирована, а в случае асинхронного ввода-вывода — когда операция завершается. Пример этой модели приведен на рис. 6.5.
Рис. 6.5. Модель асинхронного ввода-вывода
Мы вызываем функцию
На момент написания книги только некоторые системы поддерживали асинхронный ввод-вывод стандарта POSIX. Например, мы не уверены, что какие-либо системы поддерживают его для сокетов. Мы используем его только как пример для сравнения с моделью управляемого сигналом ввода-вывода.
Сравнение моделей ввода-вывода
На рис. 6.6 сравнивается пять различных моделей ввода-вывода. Здесь видно главное отличие четырех первых моделей в первой фазе, поскольку вторая фаза у них одна и та же: процесс блокируется в вызове функции
Рис. 6.6. Сравнение моделей ввода-вывода
Сравнение синхронного и асинхронного ввода-вывода
POSIX дает следующие определения этих терминов:
Операция синхронного ввода-вывода блокирует запрашивающий процесс до тех пор, пока операция ввода-вывода не завершится.
Операция асинхронного ввода-вывода не вызывает блокирования запрашивающего процесса.